Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T07:32:21.012Z Has data issue: false hasContentIssue false

Transition to turbulence at the bottom of a solitary wave

Published online by Cambridge University Press:  24 August 2012

Paolo Blondeaux*
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
Jan Pralits
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
Giovanna Vittori
Affiliation:
Department of Civil, Environmental and Architectural Engineering, Genoa University, via Montallegro 1, 16145 Genova, Italy
*
Email address for correspondence: [email protected]

Abstract

A linear stability analysis of the laminar flow in the boundary layer at the bottom of a solitary wave is made to determine the conditions leading to transition and the appearance of turbulence. The Reynolds number of the phenomenon is assumed to be large and a ‘momentary’ criterion of instability is used. The results show that the laminar regime becomes unstable during the decelerating phase, when the height of the solitary wave exceeds a threshold value which depends on the ratio between the boundary layer thickness and the local water depth. A comparison of the theoretical results with the experimental measurements of Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231) supports the analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blondeaux, P. 1987 Turbulent boundary layer at the bottom of gravity waves. J. Hydraul. Res. 25 (4), 447464.CrossRefGoogle Scholar
2. Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di un’onda di gravitá. Acc. Naz. Lincei 67, 408411 (italian).Google Scholar
3. Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech. 264, 107135.CrossRefGoogle Scholar
4. Blondeaux, P. & Vittori, G. 1999 Boundary layer and sediment dynamics under sea waves. Adv. Coast Ocean Engng 4, 133190.CrossRefGoogle Scholar
5. Blondeaux, P. & Vittori, G. 2012 RANS modelling of the turbulent boundary layer under a solitary wave. Coast. Engng 60, 110.CrossRefGoogle Scholar
6. Bogucki, D. J. & Redekopp, L. G 1999 A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Lett. 26 (9), 13171320.CrossRefGoogle Scholar
7. Conrad, P. W. & Criminale, W. O. 1965 The stability of time-dependent laminar flows. Z. Angew. Math. Phys. 16, 233254.CrossRefGoogle Scholar
8. Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.CrossRefGoogle Scholar
9. Fredsoe, J. & Deigaard, R. 1992 Mechanics of Coastal Sediment Transport, Advanced Series on Ocean Engineering , vol. 3. World Scientific.CrossRefGoogle Scholar
10. Grimshaw, R. 1971 The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46 (3), 611622.CrossRefGoogle Scholar
11. Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
12. Liu, P. L. F. & Orfilia, A. 2004 Boundary layer hydrodynamics and bed load sediment transport in oscillating water tunnels. J. Fluid Mech. 520, 8392.CrossRefGoogle Scholar
13. Liu, P. L. F., Park, Y. S. & Cowen, E. A. 2007 Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 574, 449463.CrossRefGoogle Scholar
14. Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.CrossRefGoogle Scholar
15. Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves, Advanced Series on Ocean Engineering , vol. 1. World Scientific.Google Scholar
16. Shen, S. F. 1961 Some considerations on the laminar stability of incompressible time-dependent basic flows. J. Aerosp. Sci. 28, 397404 and 417.CrossRefGoogle Scholar
17. Sumer, B. M., Jensen, P. M., Sorensen, L. B., Fredsoe, J., Liu, P. L. F. & Carstensen, S. 2010 Coherent structures in wave boundary layers. Part 2. Solitary motion. J. Fluid Mech. 646, 207231.CrossRefGoogle Scholar
18. Tanaka, H., Sumer, B. M. & Lodahl, C. 1998 Theoretical and experimental investigation on laminar boundary layers under cnoidal wave motion. Coast. Engng J. 40 (1), 8198.CrossRefGoogle Scholar
19. Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in Stokes layers. Phys. Fluids 8 (6), 13411343.CrossRefGoogle Scholar
20. Vittori, G. 2003 Sediment suspension due to waves. J. Geophys. Res. Oceans 108 (C6), 3173 4-1/4-17.CrossRefGoogle Scholar
21. Vittori, G. & Blondeaux, P. 2008 Turbulent boundary layer under a solitary wave. J. Fluid Mech. 615, 433443.CrossRefGoogle Scholar
22. Vittori, G. & Blondeaux, P. 2011 Characterstics of the boundary layer at the bottom of a solitary wave. Coast. Engng 58 (2), 206213.CrossRefGoogle Scholar
23. Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar
24. Talmon, A. M., Struiksma, N. & Van Mierlo, M. C. L. M. 1995 Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. J. Hydraul. Res. 33, 495517.CrossRefGoogle Scholar