Published online by Cambridge University Press: 19 August 2016
The asymptotic suction boundary layer (ASBL) is a parallel shear flow that becomes turbulent in a bypass transition in parameter regions where the laminar profile is stable. We here add a temperature gradient perpendicular to the plate and explore the interaction between convection and shear in determining the transition. We find that the laminar state becomes unstable in a subcritical bifurcation and that the critical Rayleigh number and wavenumber depend strongly on the Prandtl number. We also track several secondary bifurcations and identify states that are localized in two directions, showing different symmetries. In the subcritical regime, transient turbulent states which are connected to exact coherent states and follow the same transition scenario as found in linearly stable shear flows are identified and analysed. The study extends the bypass transition scenario from shear flows to thermal boundary layers and highlights the intricate interactions between thermal and shear forces.
Dynamics of the temperature field for the periodic orbit $PO_{1}$. Additionally, the temporal evolution of the amplitude $a$ and of the Nusselt number are shown.