Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:34:00.319Z Has data issue: false hasContentIssue false

Transition in pipe flow: the saddle structure on the boundary of turbulence

Published online by Cambridge University Press:  01 October 2008

Y. DUGUET
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
A. P. WILLIS
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
R. R. KERSWELL
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK

Abstract

The laminar–turbulent boundary Σ is the set separating initial conditions which relaminarize uneventfully from those which become turbulent. Phase space trajectories on this hypersurface in cylindrical pipe flow appear to be chaotic and show recurring evidence of coherent structures. A general numerical technique is developed for recognizing approaches to these structures and then for identifying the exact coherent solutions themselves. Numerical evidence is presented which suggests that trajectories on Σ are organized around only a few travelling waves and their heteroclinic connections. If the flow is suitably constrained to a subspace with a discrete rotational symmetry, it is possible to find locally attracting travelling waves embedded within Σ. Four new types of travelling waves were found using this approach.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, P. N. & Saad, Y. 1990 Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 11, 450481.CrossRefGoogle Scholar
Dennis, J. E. Jr & Schnabel, R. E. 1995 Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM.Google Scholar
Eisenstat, C. & Walker, H. 1996 Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17, 1632.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence. J. Fluid Mech. 504, 343352.CrossRefGoogle Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 The geometry of state-space in plane Couette flow. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Hagen, G. H. L. 1839 Über die Bewegung des Wassers in engen zylindrischen Rohren. Poggendorfs Annal. Physik Chemie 16, 423.CrossRefGoogle Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of non-linear traveling waves in turbulent pipe flow. Science 305, 15941597.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J. & Nieuwstadt, F. T. M. 2005. Transition in pipe flow: the saddle structure on the boundary of turbulence. Phys. Rev. Lett. 95, 214502.CrossRefGoogle Scholar
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Joseph, D. D. & Carmi, S. 1969 Stability of Poiseuille flow in pipes, annuli, and channels. Quart. Appl. Math. 26, 575599.CrossRefGoogle Scholar
Kawahara, G. 2005 Laminarization of minimal plane Couette flow: Going beyond the basin of attraction of turbulence. Phys. Fluids 17, 041702.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.CrossRefGoogle Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.CrossRefGoogle Scholar
Marqués, F. 1990 On boundary conditions for velocity potentials in confined flows: Application to Couette flow. Phys. Fluids A 2, 729737.CrossRefGoogle Scholar
Mellibovsky, F. & Meseguer, A. 2007 Pipe flow dynamics on the critical threshold. In Proc. 15th Intl Couette–Taylor Workshop (ed. Mutabazi, I.), Le Havre, France.Google Scholar
Nagata, M. 1990 Three dimensional finite amplitude solutions in plane Couette flow: Bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Nikitin, N. 2007 Spatial periodicity of spatially evolving flows caused by inflow boundary condition. Phys. Fluids 19, 091703.CrossRefGoogle Scholar
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.CrossRefGoogle ScholarPubMed
Peixinho, J. & Mullin, T. 2007 Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.CrossRefGoogle Scholar
Pfenniger, W. 1961 Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control (ed. Lachman, G. V.), pp. 970980. Cambridge University Press.Google Scholar
Poiseuille, J. L. M. 1840 Recherches experimentales sur le mouvement des liquides dans les tubes de très petits diamètres. CR Acad. Sci. 11, 961.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2008 Highly-symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. (submitted).CrossRefGoogle Scholar
Priymak, V. G. Miyazaki, T 2004 Direct numerical simulation of equilibrium spatiallly-localized structures in pipe flow. Phys. Fluids, 16, 42214234.CrossRefGoogle Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. 174, 935982.Google Scholar
Saad, Y. & Schultz, M. H. 1986 GMRES: A generalized minimal residual method for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856869.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. A. 2007 a Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.Google Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 b Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar–turbulent boundary in plane Couette flow. Preprint (http://arxiv.org/abs/0805.1015).CrossRefGoogle Scholar
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Toh, S. & Itano, T. 1999 Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence: Traveling-wave solution is a saddle point? In Proc. IUTAM Symp. on Geometry and Statistics of Turbulence (ed. Kambe, T.), Kluwer.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
Viswanath, D. 2008 The dynamics of transition to turbulence in plane Couette. In Mathematics and Computation: A Contemporary View. Springer.Google Scholar
Waleffe, F. 1997 On the self-sustaining process in shear flows. Phys. Fluids 9, 883900.CrossRefGoogle Scholar
Waleffe, F. 1998 Three dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.CrossRefGoogle Scholar
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.CrossRefGoogle Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15 15171534.CrossRefGoogle Scholar
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: Transition and control. Phys. Rev. Lett. 98, 204501.CrossRefGoogle ScholarPubMed
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: Travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2007 Critical behaviour in the relaminarisation of localised turbulence in pipe flow. Phys. Rev. Lett. 98, 14501.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2008 a Coherent structures in local and global pipe turbulence. Phys. Rev. Lett. 100, 124501.CrossRefGoogle ScholarPubMed
Willis, A. P. & Kerswell, R. R. 2008 b Turbulent dynamics of pipe flow captured in a reduced model: Puff relaminarisation and localised ‘edge’ states. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281.CrossRefGoogle Scholar