Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:10:04.806Z Has data issue: false hasContentIssue false

Transient Taylor–Aris dispersion for time-dependent flows in straight channels

Published online by Cambridge University Press:  02 December 2011

Søren Vedel*
Affiliation:
Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 B, DK-2800 Kongens Lyngby, Denmark
Henrik Bruus
Affiliation:
Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech Building 345 B, DK-2800 Kongens Lyngby, Denmark
*
Email address for correspondence: [email protected]

Abstract

Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket formalism, we derive an expression for the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent, multi-frequency solvent flow through straight channels. Our theory shows that the solute dispersion may be greatly enhanced by the time-dependent parts of the flow, and it explicitly reveals how the dispersion coefficient depends on the external driving frequencies of the velocity field and the internal relaxation rates for mass and momentum diffusion. Although applicable to any type of fluid, we restrict the examples of our theory to Newtonian fluids, for which we both recover the known results for steady and single-frequency pulsating flows, and find new, richer structure of the dispersion as function of system parameters in multi-frequency systems. We show that the effective diffusivity is enhanced significantly by those parts of the time-dependent velocity field that have frequencies smaller than the fluid momentum diffusion rate and the solute diffusion rate.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ajdari, A., Bontoux, N. & Stone, H. A. 2006 Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. Analyt. Chem. 78, 387392.CrossRefGoogle ScholarPubMed
2. Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A Mat. 235 (1200), 6777.Google Scholar
3. Aris, R. 1960 On the dispersion of solute in pulsating flow through a tube. Proc. R. Soc. Lond. A Mat. 259 (1298), 370376.Google Scholar
4. Bandyopadhyay, S. & Mazumder, B. S. 1999 Unsteady convective diffusion in a pulsatile flow through a channel. Acta Mechanica 134, 116.CrossRefGoogle Scholar
5. Barton, N. G. 1983 On the method of moments for solute dispersion. J. Fluid Mech. 126, 205218.CrossRefGoogle Scholar
6. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
7. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2006 Transport Phenomena, 2nd edn. John Wiley and Sons.Google Scholar
8. Bontoux, N., Pépin, A., Chen, Y., Ajdari, A. & Stone, H. A. 2006 Experimental characterization of hydrodynamic dispersion in shallow microchannels. Lab on a Chip 6, 930935.CrossRefGoogle ScholarPubMed
9. Brenner, H. & Edwards, D. A. 1993 Macrotransport Processes. Butterworth–Heinemann.Google Scholar
10. Bruus, H. 2008 Theoretical Microfluidics. Oxford University Press.Google Scholar
11. Bruus, H. & Stone, A. D. 1994 Quantum chaos in a deformable billiard: applications to quantum dots. Phys. Rev. B 50 (24), 1827518287.CrossRefGoogle Scholar
12. Camassa, R., Lin, Z. & McLaughlin, R. 2010 The exact evolution of scalar variance in pipe and channel flow. Commun. Math. Sci. 8 (2), 601626.CrossRefGoogle Scholar
13. Chatwin, P. C. 1975 On the longitudinal dispersion of passive contaminant in oscillatory flows in tubes. J. Fluid Mech. 71, 513527.CrossRefGoogle Scholar
14. Chatwin, P. C. 1977 Initial development of longitudinal dispersion in straight tubes. J. Fluid Mech. 80, 3348.CrossRefGoogle Scholar
15. Chatwin, P. C. & Sullivan, P. J. 1982 The effects of aspect ratio on longitudinal diffusivity in rectangular channels. J. Fluid Mech. 120, 347358.CrossRefGoogle Scholar
16. Dirac, P. A. M. 1981 The Principles of Quantum Mechanics, 4th edn. Oxford University Press.Google Scholar
17. Doshi, M. R., Daiya, P. M. & Gill, W. N. 1978 Three dimensional laminar dispersion in open and closed rectangular conduits. Chem. Engng Sci. 33, 795804.CrossRefGoogle Scholar
18. Dutta, D., Ramachandran, A & Leighton, D. T. 2006 Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems. Microfluid Nanofluid 2, 275290.CrossRefGoogle Scholar
19. Erdogan, M. E. & Chatwin, P. C. 1967 Effects of curvature and buoyancy on laminar dispersion of solute in a horizontal tube. J. Fluid Mech. 29 (3), 465484.CrossRefGoogle Scholar
20. Fan, L. T. & Wang, C. B. 1966 Dispersion of matter in non-Newtonian laminar flow through a circular tube. Proc. R. Soc. Lond. A Mat. 292 (1429), 203208.Google Scholar
21. Gleeson, J. P. 2002 Electroosmotic flows with random zeta potential. J. Colloid Interface Sci. 249 (1), 217226.CrossRefGoogle ScholarPubMed
22. Goddard, J. D. 1993 The Green’s function for passive scalar diffusion in a homogeneously sheared continuum. Phys. Fluids A 5, 22952297.CrossRefGoogle Scholar
23. Harris, H. G. & Goren, S. L. 1967 Axial diffusion in a cylinder with pulsed flow. Chem. Engng Sci. 22, 15711576.CrossRefGoogle Scholar
24. Jansons, K. M. 2006 On Taylor dispersion in oscillatory channel flows. Proc. R. Soc. Lond. A Mat. 462, 35013509.Google Scholar
25. Latini, M & Bernoff, AJ 2001 Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399411.CrossRefGoogle Scholar
26. Leighton, D. T. 1989 Diffusion from an intial point distribution in an unbounded oscillating simple shear flow. Physico-Chem. Hydrodyn. 11, 377386.Google Scholar
27. Lide (editor-in-chief), D. R. 1995 CRC Handbook of Chemistry and Physics, 75th edn. CRC Press.Google Scholar
28. Mehta, M. L. 2004 Random Matrices, 3rd edn. Pure and Applied Mathematics , vol. 142. Elsevier/Academic Press.Google Scholar
29. Molloy, R. F. & Leighton, D. T. 1998 Binary oscillatory cross-flow electrophoresis: theory and experiments. J. Pharma. Sci. 87, 12701281.CrossRefGoogle Scholar
30. Mortensen, N. A. & Bruus, H. 2006 Universal dynamics in the onset of a Hagen–Poiseuille flow. Phys. Rev. E 74 (1), 017301.CrossRefGoogle ScholarPubMed
31. Mortensen, N. A., Olesen, L. H. & Bruus, H. 2006 Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels. New J. Phys. 8, 3751.CrossRefGoogle Scholar
32. Mukherjee, A. & Mazumder, B. S. 1988 Dispersion of contaminant in oscillatory flows. Acta Mechanica 74, 107.CrossRefGoogle Scholar
33. Paul, S. & Mazumder, B. S. 2008 Dispersion in unsteady Couette–Poiseuille flows. Intl J. Engng Sci. 46, 12031217.CrossRefGoogle Scholar
34. Probstein, R. F. 1994 Physicochemical Hydrodynamics. An Introduction, 2nd edn. John Wiley and Sons.CrossRefGoogle Scholar
35. Sankarasubramanian, R. & Gill, W. N. 1973 Unsteady convective diffusion with interphase mass-transfer. Proc. R. Soc. Lond. A Mat. 333 (1592), 115132.Google Scholar
36. Skafte-Pedersen, P., Sabourin, D., Dufva, M. & Snakenborg, D. 2009 Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay. Lab on a Chip 9, 30033006.CrossRefGoogle ScholarPubMed
37. Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A Mat. 219 (1137), 186.Google Scholar
38. Taylor, H. M. & Leonard, E. F. 1965 Axial dispersion during pulsating pipe flow. AIChE J. 11 (4), 686689.CrossRefGoogle Scholar
39. Thomas, A. M. & Narayanan, R. 2001 Physics of oscillatory flow and its effect on the mass transfer and separation of species. Phys. Fluids 13 (4), 859866.CrossRefGoogle Scholar
40. van den Broeck, C. 1982 A stochastic description of longitudinal dispersion in uniaxial flows. Physica A 112, 343352.CrossRefGoogle Scholar
41. Vedel, S., Olesen, L. H. & Bruus, H. 2010 Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems. J. Micromech. Microengng 20, 035026.CrossRefGoogle Scholar
42. Vikhansky, A. & Wang, W. 2011 Taylor dispersion in finite-length capillaries. Chem. Engng Sci. 66 (4), 642649.CrossRefGoogle Scholar
43. Watson, E. J. 1983 Diffusion in oscillatory pipe flow. J. Fluid Mech. 133, 233244.CrossRefGoogle Scholar
44. Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.CrossRefGoogle ScholarPubMed