Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:47:15.999Z Has data issue: false hasContentIssue false

Transient inertial hydrodynamic interaction between two identical spheres settling at small Reynolds number

Published online by Cambridge University Press:  23 May 2008

B. U. FELDERHOF*
Affiliation:
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germanyufelder@physik.rwth-aachen.de

Abstract

The flow pattern generated by a sphere accelerated from rest by a small constant applied forceshows scaling behaviour at long times, as can be shown from the solution of the linearized Navier–Stokes equations. In the scaling regime the kinetic energy of the flow grows with thesquare root of time. For two distant settling spheres starting from rest the kinetic energy ofthe flow depends on the distance vector between centres; owing to interference of the flowpatterns. It is argued that this leads to relative motion of the two spheres. Thecorresponding interaction energy is calculated explicitly in the scaling regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
Aidun, C. K. & Ding, E.-J. 2003 Dynamics of particle sedimentation in a verticalchannel: Period-doubling bifurcation and chaotic state. Phys. Fluids 15, 1612.CrossRefGoogle Scholar
Albano, A. M., Bedeaux, D. & Mazur, P. 1975 On the motion of a sphere with arbitraryslip in a viscous incompressible fluid. Physica A 80, 89.CrossRefGoogle Scholar
Atakhorrami, M., Koenderink, G. H., Schmidt, C. F. & MacKintosh, F. C. 2005 Short-timeinertial response of viscoelastic fluids: observation of vortex propagation. Phys. Rev.Lett. 95, 208302.CrossRefGoogle ScholarPubMed
Brenner, H. 1966 Hydrodynamic resistance of particles at small Reynolds number. Adv. Chem. Engng 6, 287.CrossRefGoogle Scholar
Cichocki, B. & Felderhof, B. U. 2000 Long-time tails in the solid-bodymotion of a sphere immersed in a suspension. Phys. Rev. E 62, 5383.Google Scholar
Einstein, A. 1906 Zur Theorie der Brownschen Bewegung. Ann. Phys. (Leipzig) 19, 371; reprinted in English translation in 1956 Investigations on the Theory of the Brownian Movement (ed. Fürth, R.). Dover.Google Scholar
Felderhof, B. U. 1976 Force density induced on a sphere in linear hydrodynamics, II. Moving sphere, mixed boundary conditions. Physica A 84, 557, erratum 1977 Physica A 88, 617.CrossRefGoogle Scholar
Felderhof, B. U. 1991 Motion of a sphere in a viscous incompressible fluid at low Reynolds number. Physica A 175, 114.CrossRefGoogle Scholar
Felderhof, B. U. 2005 Sedimentation of spheres at small Reynolds number. J. Chem.Phys. 122, 214905.CrossRefGoogle ScholarPubMed
Felderhof, B. U. 2007 a Flow caused by a square force pulse applied to asphere immersed in a viscous incompressible fluid. Phys. Fluids 19, 093102.Google Scholar
Felderhof, B. U. 2007 b Transient flow caused by a sudden impulse or twist applied to asphere immersed in a viscous incompressible fluid. Phys. Fluids 19, 073102.Google Scholar
Felderhof, B. U. 2007 c Effect of fluid compressibility on the flow caused by a suddenimpulse applied to a sphere immersed in a viscous fluid. Phys. Fluids 19, 126101.CrossRefGoogle Scholar
Felderhof, B. U. & Jones, R. B. 1986 Hydrodynamic scattering theory of flow about asphere. Physica A 136, 77.CrossRefGoogle Scholar
Feuillebois, F. 2004 Perturbation Problems at Low Reynolds Number. Institute of Fundamental Technological Research.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, p. 504. Noordhoff.Google Scholar
Hocking, L. M. 1964 The behaviour of clusters of spheres falling in a viscous fluid. J. Fluid Mech. 20, 129.CrossRefGoogle Scholar
Jayaweera, K. O. L. F., Mason, B. J. & Slack, G. W. 1964 The behaviour of clusters ofspheres falling in a viscous fluid. J. Fluid Mech. 20, 121.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161.Google Scholar
Karnis, A., Goldsmith, H. & Mason, S. G. 1966 The flow of suspensions through tubes.Part 5. Inertial effects. Can. J. Chem. Engng 44, 181.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and SelectedApplications, p. 154. Butterworth-Heinemann.Google Scholar
Lamb, H. 1932 Hydrodynamics, p. 130. Dover.Google Scholar
Leal, L. G. 1980 Particle motion in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435.CrossRefGoogle Scholar
Lighthill, J. 1986 An Informal Introduction to Theoretical Fluid Mechanics. Clarendon.Google Scholar
Onsager, L. 1931 Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265.CrossRefGoogle Scholar
Oseen, C. W. 1927 Hydrodynamik, p. 47. Akademische Verlagsgesellschaft.Google Scholar