Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-02T21:59:30.314Z Has data issue: false hasContentIssue false

Transient force augmentation due to counter-rotating vortex ring pairs

Published online by Cambridge University Press:  23 November 2015

Zhidong Fu
Affiliation:
J. C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
Hong Liu*
Affiliation:
J. C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
*
Email address for correspondence: [email protected]

Abstract

Of particular significance to biological locomotion is vortex ring interaction. In the wakes of animals, this unsteady process determines the changes in the impulse of counter-rotating vortex ring pairs (VRPs), which consist of two vortex rings with opposite sense of rotation. In this paper, these VRPs are proposed to be of particular importance to unsteady force generation. We carry out numerical computations, simulating the piston–cylinder apparatus, to study the transient changes in the impulse of counter-rotating VRPs composed of a positive and a negative vortex ring. We model the negative vortex ring (NeVR) of a VRP by making reasonable assumptions about their vorticity distributions and spatial locations, which are initially prescribed. The result of modelling is superimposed on the flow, which has a pre-existing positive vortex ring (PoVR), leading to a VRP. The simulation quantitatively demonstrates that the unsteady force resulting from a VRP is significantly larger compared with an isolated PoVR (without an NeVR). The force enhancement is also correlated to vortex configurations. A normalised force coefficient characterising force augmentation over the entire stroke is given. The force augmentation coefficient grows significantly and then reaches a plateau as the momentum input increases. The results are consistent with those in fully unsteady vortex interaction, which involves the generation of an NeVR. It is suggested that counter-rotating VRPs could offer a new perspective to explain unconventional force generation for biological swimming and flying.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.

References

Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211, 239257.Google Scholar
Aref, H. & Zawadzki, I. 1991 Linking of vortex rings. Nature 354, 5053.Google Scholar
Bartol, I. K., Krueger, P. S., Stewart, W. J. & Thompson, J. T. 2009 Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet ‘modes’ and their implications for propulsive efficiency. J. Expl Biol. 212, 18891903.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bergdorf, M., Koumoutsakos, P. & Leonard, A. 2007 Direct numerical simulations of vortex rings at $Re_{{\it\Gamma}}=7500$ . J. Fluid Mech. 581, 495505.Google Scholar
Brodsky, A. K. 1991 Vortex formation in the tethered flight of the peacock butterfly inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J. Expl Biol. 161, 7795.Google Scholar
Cater, J. E., Soria, J. & Lim, T. T. 2004 The interaction of the piston vortex with a piston-generated vortex ring. J. Fluid Mech. 499, 327343.Google Scholar
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.Google Scholar
Dabiri, J. O., Colin, S. P., Costello, J. H. & Gharib, M. 2005 Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J. Expl Biol. 208, 12571265.Google Scholar
Dabiri, J. O. & Gharib, M. 2004 Fluid entrainment by isolated vortex rings. J. Fluid Mech. 511, 311331.Google Scholar
Dickinson, M. H. 1996 Unsteady mechanisms of force generation in aquatic and aerial locomotion. Am. Zool. 36, 537554.Google Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R. & Lehman, S. 2000 How animals move: an integrative view. Science 288, 100106.Google Scholar
Dickinson, M. H. & Götz, K. G. 1996 The wake dynamics and flight forces of the fruit fly Drosophila melanogaster . J. Expl Biol. 199, 20852104.Google Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.Google Scholar
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. J. Appl. Mech. Phys. 30, 101116.Google Scholar
Drucker, E. G. & Lauder, G. V. 2005 Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J. Expl Biol. 208, 44794494.CrossRefGoogle ScholarPubMed
Fraenkel, L. E. 1972 Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51, 119135.Google Scholar
Fu, Z., Qin, S. & Liu, H. 2014 Mechanism of transient force augmentation varying with two distinct timescales for interacting vortex rings. Phys. Fluids 26, 011901.Google Scholar
Gao, L. & Yu, S. C. M. 2010 A model for the pinch-off process of the leading vortex ring in a starting jet. J. Fluid Mech. 656, 205222.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.Google Scholar
Hamlet, C., Santhanakrishnan, A. & Miller, L. A. 2011 A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea xamachana . J. Expl Biol. 214, 19111921.Google Scholar
Hubel, T. Y., Riskin, D. K., Swartz, S. M. & Breuer, K. S. 2010 Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis . J. Expl Biol. 213, 34273440.Google Scholar
Krueger, P. S. 2005 An over-pressure correction to the slug model for vortex ring circulation. J. Fluid Mech. 545, 427443.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Lee, J.-J., Hsieh, C.-T., Chang, C. C. & Chu, C.-C. 2012 Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464492.Google Scholar
Lehmann, F.-O. 2008 When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. J. Expl Biol. 211, 224233.Google Scholar
Lehmann, F.-O., Sane, S. P. & Dickinson, M. H. 2005 The aerodynamic effects of wing–wing interaction in flapping insect wings. J. Expl Biol. 208, 30753092.Google Scholar
Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Vortices in Fluid Flows (ed. Green, S. I.), pp. 95154. Kluwer.Google Scholar
Linden, P. F. & Turner, J. S. 2004 Optimal’ vortex rings and aquatic propulsion mechanisms. Proc. R. Soc. Lond. B 271, 647653.CrossRefGoogle ScholarPubMed
Liu, B., Ristroph, L., Weathers, A., Childress, S. & Zhang, J. 2012 Intrinsic stability of a body hovering in an oscillating airflow. Phys. Rev. Lett. 108, 068103.Google Scholar
Nitsche, M. & Krasny, R. 1994 A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139161.Google Scholar
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57, 417431.Google Scholar
O’Farrell, C. & Dabiri, J. O. 2012 Perturbation response and pinch-off of vortex rings and dipoles. J. Fluid Mech. 704, 280300.Google Scholar
O’Farrell, C. & Dabiri, J. O. 2014 Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 740, 6196.Google Scholar
Peng, J. & Dabiri, J. O. 2008 An overview of a Lagrangian method for analysis of animal wake dynamics. J. Expl Biol. 211, 280287.Google Scholar
Pozrikidis, C. 2009 Fluid Dynamics: Theory, Computation, and Numerical Simulation. Springer.CrossRefGoogle Scholar
Pradeep, D. S. & Hussain, F. 2004 Effects of boundary condition in numerical simulations of vortex dynamics. J. Fluid Mech. 516, 115124.Google Scholar
Rosenfeld, M., Katija, K. & Dabiri, J. O. 2009 Circulation generation and vortex ring formation by conical nozzles. Trans. ASME J. Fluids Engng 131, 091204.Google Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sahin, M., Mohseni, K. & Colin, S. P. 2009 The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria . J. Expl Biol. 212, 26562667.CrossRefGoogle ScholarPubMed
Srygley, R. B. & Thomas, A. L. R. 2002 Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420, 660664.Google Scholar
Stewart, W. J., Bartol, I. K. & Krueger, P. S. 2010 Hydrodynamic fin function of brief squid, Lolliguncula brevis . J. Expl Biol. 213, 20092024.Google Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207, 42994323.Google Scholar
Warrick, D. R., Tobalske, B. W. & Powers, D. R. 2005 Aerodynamics of the hovering hummingbird. Nature 435, 10941097.Google Scholar
Weathers, A., Folie, B., Liu, B., Childress, S. & Zhang, J. 2010 Hovering of a rigid pyramid in an oscillatory airflow. J. Fluid Mech. 650, 415425.CrossRefGoogle Scholar
Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432441.Google Scholar
Wu, J. C. 2005 Elements of Vorticity Aerodynamics. Tsinghua University Press.Google Scholar