Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T21:03:45.287Z Has data issue: false hasContentIssue false

Transient energy growth of a swirling jet with vortex breakdown

Published online by Cambridge University Press:  02 October 2018

Gopalsamy Muthiah
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
Arnab Samanta*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012, India
*
Email address for correspondence: [email protected]

Abstract

We investigate the existence of short-time, local transient growth in the helical modes of a rapidly swirling, high-speed jet that has transitioned into an axisymmetric bubble breakdown state. The time-averaged flow consisting of the bubble and its wake downstream constitute the base state, which we show to exhibit strong transient amplification owing to the non-modal behaviour of the continuous eigenspectrum. A pseudospectrum analysis mathematically identifies the so-called potential modes within this continuous spectrum and the resultant non-orthogonality between these modes and the existing discrete stable modes is shown to be the main contributor to such growth. As the swirling flow develops post the collapsed bubble, the potential spectrum moves further toward the unstable half-plane, which along with the concurrent weakening of exponential growth from the discrete unstable modes, increases the dynamic importance of transient growth inside the wake region. The transient amplifications calculated at several locations inside the bubble and wake confirm this, where strong growths inside the wake far outstrip the corresponding modal growths (if available) at shorter times, but especially at the higher helical orders and smaller streamwise wavenumbers. The corresponding optimal perturbations at initial times consist of streamwise streaks of azimuthal velocity, which if concentrated inside the core vortical region, unfold via the classical Orr mechanism to yield structures resembling core (or viscous) Kelvin waves of the corresponding Lamb–Oseen vortex. However, in contrast to that in Lamb–Oseen vortex flow, where critical-layer waves are associated with higher transient gains, here, such core Kelvin modes with the more compact spiral structure at the vortex core are seen to yield the maximum transient amplifications.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akervik, E., Hoepffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer using global eigenmodes. J. Fluid Mech. 579, 305314.Google Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.Google Scholar
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.Google Scholar
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.Google Scholar
Arratia, C., Caulfield, C. P. & Chomaz, J.-M. 2013 Transient perturbation growth in time-dependent mixing layers. J. Fluid Mech. 717, 90133.Google Scholar
Barkley, D., Blackburn, H. M. & Sherwin, S. J. 2008 Direct optimal growth analysis for timesteppers. Intl J. Numer. Meth. Fluids 57, 14371458.Google Scholar
Batchelor, G. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.Google Scholar
Ben-Dov, G., Levinski, V. & Cohen, J. 2004 Optimal disturbances in swirling flows. AIAA J. 42 (9), 18411848.Google Scholar
Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593629.Google Scholar
Billant, P., Chomaz, J.-M. & Huerre, P. 1998 Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183219.Google Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.Google Scholar
Candel, S., Durox, D., Schuller, T., Bourgouin, J. & Moeck, J. P. 2014 Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147173.Google Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.Google Scholar
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12 (1), 120130.Google Scholar
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.Google Scholar
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Prediction of the flow unsteadiness based on global instability. J. Comput. Phys. 224, 924940.Google Scholar
Escudier, M. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2), 189229.Google Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.Google Scholar
Fontane, J., Brancher, P. & Fabre, D. 2008 Stochastic forcing of the Lamb–Oseen vortex. J. Fluid Mech. 613, 233254.Google Scholar
Gallaire, F. & Chomaz, J.-M. 2003 Instability mechanisms in swirling flows. Phys. Fluids 15 (9), 26222639.Google Scholar
Gallaire, F., Ruith, M., Meiburg, E., Chomaz, J.-M. & Huerre, P. 2006 Spiral vortex breakdown as a global mode. J. Fluid Mech. 549, 7180.Google Scholar
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 Modal and transient dynamics of jet flows. Phys. Fluids 25 (4), 044103.Google Scholar
Heaton, C. J. 2007 Optimal growth of the Batchelor vortex viscous modes. J. Fluid Mech. 592, 495505.Google Scholar
Heaton, C. J. & Peake, N. 2007 Transient growth in vortices with axial flow. J. Fluid Mech. 587, 271301.Google Scholar
Khorrami, M. R., Malik, M. R. & Ash, R. L. 1989 Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206229.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.Google Scholar
Liang, H. & Maxworthy, T. 2005 An experimental investigation of swirling jets. J. Fluid Mech. 525, 115159.Google Scholar
Liang, H. & Maxworthy, T. 2008 Experimental investigations of a swirling jet in both stationary and rotating surroundings. Exp. Fluids 45 (2), 283293.Google Scholar
Mack, L. M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73, 497520.Google Scholar
Mao, X.2010 Vortex instability and transient growth. PhD thesis, Imperial College London.Google Scholar
Mao, X. & Sherwin, S. J. 2011 Continuous spectra of the Batchelor vortex. J. Fluid Mech. 681, 123.Google Scholar
Mao, X. & Sherwin, S. J. 2012 Transient growth associated with continuous spectra of the Batchelor vortex. J. Fluid Mech. 697, 3559.Google Scholar
Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids 24 (6), 061701.Google Scholar
Mettot, C., Sipp, D. & Bézard, H. 2014 Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26 (4), 045112.Google Scholar
Michalke, A. 1999 Absolute inviscid instability of a ring jet with back-flow and swirl. Eur. J. Mech. 18, 312.Google Scholar
Monkewitz, P. A. & Sohn, K. 1988 Absolute instability in hot jets. AIAA J. 26 (8), 911916.Google Scholar
Muthiah, G.2017 Non-modal stability of swirling jet. Master’s thesis, Indian Institute of Science.Google Scholar
Nichols, J. W. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.Google Scholar
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.Google Scholar
Obrist, D. & Schmid, P. J. 2003 On the linear stability of swept attachment-line boundary layer flow. Part 2. Non-modal effects and receptivity. J. Fluid Mech. 493, 3158.Google Scholar
Obrist, D. & Schmid, P. J. 2010 Algebraically decaying modes and wave packet pseudo-modes in swept Hiemenz flow. J. Fluid Mech. 643, 309332.Google Scholar
Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Part II. A viscous liquid. Proc. R. Irish Acad. A 27, 9138.Google Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.Google Scholar
Qadri, U. A., Mistry, D. & Juniper, M. P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.Google Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.Google Scholar
Ruith, M., Chen, P., Meiburg, E. & Maxworthy, T. 2003 Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331378.Google Scholar
Schmid, P. J. 2000 Linear stability theory and bypass transition in shear flows. Phys. Plasmas 7 (5), 17881794.Google Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Schmid, P. J., Henningson, D. S., Khorrami, M. R. & Malik, M. R. 1993 A study of eigenvalue sensitivity for hydrodynamic stability operators. Theor. Comput. Fluid Dyn. 4 (5), 227240.Google Scholar
Tammisola, O. & Juniper, M. P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.Google Scholar
Trefethen, L. N. 1999 Computation of pseudospectra. Acta Numer. 8, 247295.Google Scholar
Trefethen, L. N. 2005 Wave packet pseudomodes of variable-coefficient differential operators. Proc. R. Soc. Lond. A 461, 30993122.Google Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
Vitoshkin, H. & Gelfgat, A. Y. 2014 Non-modal disturbances growth in a viscous mixing layer flow. Fluid Dyn. Res. 46, 041414.Google Scholar
Yadav, N. K. & Samanta, A. 2017 The stability of compressible swirling pipe flows with density stratification. J. Fluid Mech. 823, 689715.Google Scholar
Zaki, T. A. & Saha, S. 2009 On shear sheltering and the structure of vortical modes in single- and two-fluid boundary layers. J. Fluid Mech. 626, 111147.Google Scholar