Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:32:46.374Z Has data issue: false hasContentIssue false

Transient bubbles interacting with an attached cavity and the boundary layer

Published online by Cambridge University Press:  26 April 2006

L. Briançon-Marjollet
Affiliation:
Institut de Mécanique de Grenoble, B.P. 53 X, 38041 Grenoble Cedex, France Present address: Grand Tunnel Hydrodynamique, Bassin d'Essais des Carènes 27100, Val de Reuil, France.
J. P. Franc
Affiliation:
Institut de Mécanique de Grenoble, B.P. 53 X, 38041 Grenoble Cedex, France
J. M. Michel
Affiliation:
Institut de Mécanique de Grenoble, B.P. 53 X, 38041 Grenoble Cedex, France

Abstract

Experiments on two-dimensional cavitating hydrofoils show important differences in global behaviour of flows according to the population of air nuclei conveyed by the liquid. By means of visualization techniques and flow modelling, the major features of attached-cavity flows and transient-bubble flows are revealed. The main topics of the paper are: cavitation inception in either regime, hydrofoil saturation and the sweeping away of a cavity by bubbles. The main conditions for the validity of the λ−3 similitude rule are delineated. Special attention is given to the mechanism of interaction between the exploding bubbles, the attached cavity and the boundary layer. Estimates of the critical number of active nuclei for saturation and cavity suppression which agree with experimental results are given.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, K. & Bjorheden, O., 1975 Cavitation testing of propellers in a free surface tunnel utilizing micro air bubble control. Trans. ASME I: J. Fluids Engng 97, 523532.Google Scholar
Arakeri, V. H. & Acosta, A. J., 1973 Viscous effects in the inception of cavitation on axisymmetric bodies. Trans. ASME I: J. Fluids Engng 95, 519527.Google Scholar
Arakeri, V. H. & Acosta, A. J., 1976 Cavitation observations on axisymmetric bodies at supercritical Reynolds number. J. Ship Res. 20, 4050.Google Scholar
Aeakeri, V. H. & Acosta, A. J., 1981 Viscous effects in the inception of cavitation. Trans. ASME I: J. Fluids Engng 103, 280287.Google Scholar
Arnal, D., Habiballah, M. & Coustols, E., 1984 Théorie de l'instabilité laminaire et critère de transition en écoulement bi et tri-dimensionnel. La Recherche Aérospatiale 2.Google Scholar
Avellan, P., Gindroz, B., Henry, P., Bachman, P., Vuilloud, A. & Wegner, M., 1986 Influence de la chute d'essai et de la nucléation sur les performances en cavitation des modèles de turbines Francis. AIRH Symp. on Cavitation and Turbomachinery, Montreal, August 1986.Google Scholar
Briançon-Marjollet, L.: 1987 Couches limites, germes et cavités en interaction: étude physique. Thesis, University of Grenoble.
Briançon-Marjollet, L. & Michel, J. M. 1987 The hydrodynamic tunnel of IMG: Former and recent equipment. Proc. Intl. ASME Symp. on Cavitation Research Facilities and Techniques, Boston, Dec. 1987, pp. 3747.Google Scholar
Franc, J. P. & Michel, J. M., 1985 Attached cavitation and the boundary layer: experimental investigation and numerical treatment. J. Fluid Mech. 154, 6390 (referred to herein as FM 1985).Google Scholar
Franc, J. P. & Michel, J. M., 1988 Unsteady attached cavitation on an oscillating hydrofoil. J. Fluid Mech. 193, 171189 (referred to herein as FM 1988).Google Scholar
Gates, E. M. & Acosta, A. J., 1978 Some effects of several freestream factors on cavitation inception of axisymmetric bodies. Proc. 12th Symp. on Naval Hydrodyn., Washington, DC, June 5–9, pp. 86110, National Academy Press.
Henry, P., Lecoffre, Y. & Larroze, P. Y., 1980 Scale effects of cavitation phenomena. AIRH Symp. on Cavitation and Fluid Machinery, Tokyo.Google Scholar
Holl, J. W. & Carroll, J. A., 1979 Observations of the various types of limited cavitation on axisymmetric bodies. Proc. Intl. ASME Symp. On Cavitation Inception, New York, Dec. 1979, pp. 8799.Google Scholar
Holl, J. W. & Wislicenus, G. F., 1961 Scale effects on cavitation. Trans. ASME D: J. Basic Engng 385395.Google Scholar
Huang, T. T. & Peterson, F. B., 1976 Influence of viscous effects on model/full scale cavitation scaling. J. Ship Res. 20, 215223.Google Scholar
Johnson, V. E. & Hsieh, T., 1966 The influence of trajectories of gas nuclei on cavitation inception. Proc. 6th Symp. on Naval Hydrodyn. Washington DC, pp. 163183.Google Scholar
Keller, A. P.: 1984 Scale effects at beginning cavitation applied to submerged bodies. Proc. ASME Intl. Symp. on Cavitation Inception, New Orleans, Dec. 1984, pp. 4347.Google Scholar
Knapp, R. T., Daily, J. W. & Hammit, F. G., 1970 Cavitation. McGraw-Hill.
Kodama, Y., Tamiya, S., Take, N. & Kato, H., 1979 The effect of nuclei on the inception of bubble and sheet cavitation on axisymmetric bodies. Proc. Intl. ASME Symp. on Cavitation Inception, New York, Dec. 1979, pp. 7580.Google Scholar
Lecoffre, Y.: 1987 Procedures and instrumentation for monitoring gas content in cavitation test loops. Proc. Intl. ASME Symp. on Cavitation Research Facilities and Techniques, Boston, Dec. 1987, pp. 139146.Google Scholar
Lecoffre, Y., Bonnin, J.: 1979 Cavitation tests and nucleation control. Proc. Intl. ASME Symp. On Cavitation Inception, New York, Dec. 1979, pp. 141145.Google Scholar
Le Goff, J. P. & Lecoffre, Y. 1982 Nuclei and cavitation. Proc. 14th Symp. on Naval Hydrodyn., Ann Arbor, pp. 215242. National Academy Press.
Lemonnier, H. & Rowe, A., 1988 Another approach in modelling cavitating flows. J. Fluid Mech. 195, 557580.Google Scholar
Lindgren, H. & Johnsson, C. A., 1966 Cavitation inception on headforms. Proc. 11th Intl. Towing Tank Conf., Tokyo.Google Scholar
Menoret, L. & Blayo, E., 1988 Effet du nombre de germes sur la cavitation à bulles et sur les pressions produites. La Houille Blanche 7/8, pp. 501505.Google Scholar
O'Hern, T. J., d'Agostino, L. & Acosta, J. 1988 Comparison of holographic and Coulter counter measurements of cavitation nuclei in the ocean. Trans. ASME I: J. Fluids Engng 110, 200207.Google Scholar
Oldenziel, D. M.: 1979 Bubble cavitation in relation to liquid quality. Thesis, Delft Hydraulics Laboratory publication N° 211.Google Scholar
Parkin, B. R. & Baker, B. B., 1988 Bubble dynamics and cavitation inception theory. J. Ship Res. 23, 155167.Google Scholar
Pellone, C. & Rowe, A., 1981 Supercavitating hydrofoils in non-linear theory. Proc. 3rd Intl. Conf. on Numerical Ship Hydrodyn., Paris, pp. 399412.Google Scholar
Plesset, M. S. & Prosperetti, A., 1977 Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145185.Google Scholar
Van der Meulen, J. H. J. 1980 Boundary layer and cavitation studies of NACA 16-012 and NACA 4412 hydrofoils. Proc. 13th Symp. on Naval Hydrodyn., Tokyo, pp. 195219, National Academy Press.
Voinov, O. V.: 1973 On the force acting on a sphere in a non-uniform stream of perfect incompressible fluid. J. Appl. Mech. Tech. Phys. 4, pp. 182184.Google Scholar