Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T04:53:11.921Z Has data issue: false hasContentIssue false

Trailing-edge flow and noise control using porous treatments

Published online by Cambridge University Press:  02 July 2018

Syamir Alihan Showkat Ali
Affiliation:
Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK School of Manufacturing Engineering, Universiti Malaysia Perlis, 02600 Perlis, Malaysia
Mahdi Azarpeyvand*
Affiliation:
Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
Carlos Roberto Ilário da Silva
Affiliation:
Embraer, São José dos Campos, SP 12227-901, Brazil
*
Email address for correspondence: [email protected]

Abstract

This paper is concerned with the application of porous treatments as a means of flow and aerodynamic noise reduction. An extensive experimental investigation is undertaken to study the effects of flow interaction with porous media, in particular in the context of the manipulation of flow over blunt trailing edges and attenuation of vortex shedding. Comprehensive boundary layer and wake measurements have been carried out for a long flat plate with solid and porous blunt trailing edges. Unsteady velocity and surface pressure measurements have also been performed to gain an in-depth understanding of the changes to the energy–frequency content and coherence of the boundary layer and wake structures as a result of the flow interaction with a porous treatment. Results have shown that permeable treatments can effectively delay the vortex shedding and stabilize the flow over the blunt edge via mechanisms involving flow penetration into the porous medium and discharge into the near-wake region. It has also been shown that the porous treatment can effectively destroy the spanwise coherence of the boundary layer structures and suppress the velocity and pressure coherence, particularly at the vortex shedding frequency. The flow–porous scrubbing and its effects on the near-wall and large coherent structures have also been studied. The emergence of a quasi-periodic recirculating flow field inside highly permeable surface treatments has also been investigated. Finally, the paper has identified several important mechanisms concerning the application of porous treatments for aerodynamic and aeroacoustic purposes, which can help more effective and tailored designs for specific applications.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

A preliminary version of this paper was presented as Paper 2017-3358 at the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado, 5–9 June 2017.

References

Abernathy, F. H.1970 Fundamentals of boundary layers. Encyclopaedia Britannica Educational Corporation, National Commitee for Fluid Mechanics Films. Film notes, pp. 1–7.Google Scholar
Afshari, A., Azarpeyvand, M., Dehghan, A. A. & Szoke, M. 2016 Trailing edge noise reduction using novel surface treatments. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. AIAA 2016-2384.Google Scholar
Allard, J. & Atalla, N. 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd edn. Wiley.Google Scholar
Allard, J. F. & Champoux, Y. 1992 New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91 (6), 33463353.Google Scholar
Angland, D., Zhang, X. & Molin, N. 2009 Measurements of flow around a flap side edge with porous edge treatment. AIAA J. 47 (7), 16601671.Google Scholar
Bae, Y., Jeong, Y. E. & Moon, Y. J. 2009 Effect of porous surface on the flat plate self-noise. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida. AIAA 2009-3311.Google Scholar
Bearman, P. W. & Tombazis, N. 1993 The effects of three-dimensional imposed disturbances on bluff body near wake flows. J. Wind Engng Ind. Aerodyn. 49 (1–3), 339349.Google Scholar
Berg, S., Cense, A. W., Hofman, J. P. & Smits, R. M. M.2007 Flow in porous media with slip boundary condition. In Society of Core Analysts, Calgary, Canada. SCA-2007-13.Google Scholar
Bevilaqua, P. M.1975 Intermittency, the entrainment problem. ARL Tech. Rep. 75-0095. Aerospace Research Labs.Google Scholar
Bhattacharyya, S., Dhinakaran, S. & Khalili, A. 2006 Fluid motion around and through a porous cylinder. Chem. Engng Sci. 61 (13), 44514461.Google Scholar
Bhattacharyya, S. & Singh, A. K. 2011 Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder. Intl J. Numer. Meth. Fluids 65 (6), 683698.Google Scholar
Blake, W. K. 2012 Mechanics of Flow-Induced Sound and Vibration V2: Complex Flow-Structure Interactions. Elsevier.Google Scholar
Brooks, T. F., Pope, D. S. & Marcolini, M. A.1989 Airfoil self-noise and prediction. NASA Reference Publication 1218.Google Scholar
Bruneau, C. H., Creuse, E., Depeyras, D., Gillieron, P. & Mortazavi, I. 2012 Active and passive flow control around simplified ground vehicles. J. Appl. Fluid Mech. 5 (1), 8993.Google Scholar
Bruneau, C. H. & Mortazavi, I. 2008 Numerical modelling and passive flow control using porous media. J. Comput. Fluids 37 (5), 488498.Google Scholar
Bruneau, C. H., Mortazavi, I. & Gilliéron, P. 2008 Flow regularisation and drag reduction around blunt bodies using porous devices. In IUTAM Symposium on Flow Control and MEMS, Springer.Google Scholar
Bushnell, D. M. & Hefner, J. N. 1990 Viscous drag reduction in boundary layers. Progress in Astronautics and Aeronautics, vol. 123. American Institute of Aeronautics and Astronautics.Google Scholar
Cancelliere, A., Chang, C., Foti, E., Rothman, D. H. & Succi, S. 1990 The permeability of a random medium: comparison of simulation with theory. Phys. Fluids A 2 (12), 20852088.Google Scholar
Charts2017 Design tools surface finish. LJ Star Incorporated. Available at http://www.ljstar.com/product-lines.Google Scholar
Chen, F. & Chen, C. F. 1992 Convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97119.Google Scholar
Choudhari, M. & Khorrami, M. R. 2003 Computational study of porous treatment for altering flap side-edge flow field. In Proceedings of the 9th AIAA/CEAS Aeroacoustic Conference and Exhibit. Hilton Head, South Carolina. AIAA 2003-3113.Google Scholar
Clark, I., Devenport, W. J., Jaworski, J., Daly, C., Peake, N. & Glegg, S. A. 2014 The noise generating and suppressing characteristics of bio-inspired rough surfaces. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. AIAA 2014-2911.Google Scholar
Corcos, G. M. 1963 Resolution of pressure in turbulence. J. Acoust. Soc. Am. 35 (2), 192199.Google Scholar
Dantec 2013 Dantec Dynamics StreamWare Pro Installation and User Guide, vol. 5.10. Dantec Dynamics A/S.Google Scholar
Dupuit, J. E. J. 1863 Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux de couverts etatravers les terrains permeables, 2nd edn. Dunod.Google Scholar
Durlofsky, L. & Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30 (11), 33293341.Google Scholar
Eiffel, G. 1912 Sur la résistance des spheres dans l’air en mouvement. Comptes Rendus 155, 15971599.Google Scholar
Feng, P., Xiaoling, W. & Yan, S. 2009 Investigation on the sound absorbing characteristics of porous metal plates at high sound pressure levers. Acta Acoust. 34 (3), 266274.Google Scholar
Fink, M. R. & Bailey, D. A.1980 Airframe noise reduction studies and clean-airframe noise investigation. NASA Contractor Report 159311.Google Scholar
Garcia-Sagrado, A. & Hynes, T. 2012 Wall pressure sources near an airfoil trailing edge under turbulent boundary layers. J. Fluids Struct. 30, 334.Google Scholar
Geyer, T. & Sarradj, E. 2014 Trailing edge noise of partially porous airfoils. In Proceedings of the 20th AIAA/CEAS Aeroacoustic Conference and Exhibit. Atlanta, GA. AIAA 2014-3039.Google Scholar
Geyer, T., Sarradj, E. & Fritzsche, C. 2010a Measurement of the noise generation at the trailing edge of porous airfoils. Exp. Fluids 48 (2), 291308.Google Scholar
Geyer, T., Sarradj, E. & Fritzsche, C. 2010b Porous airfoils: noise reduction and boundary layer effects. Intl J. Aeroacoust. 9 (6), 787820.Google Scholar
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.Google Scholar
Gravante, S. P., Naguib, A. M., Wark, C. E. & Nagib, H. M. 1998 Characterization of the pressure fluctuations under a fully developed turbulent boundary layer. AIAA J. 36 (10), 18081816.Google Scholar
Gruber, M.2012 Airfoil noise reduction by edge treatments. PhD thesis, University of Southampton.Google Scholar
Herr, M. 2007 A noise reduction study on flow-permeable trailing-edges. In Proceedings of the 8th ONERA-DLR Aerospace Symposium (ODAS) Conference, Gottingen, Germany.Google Scholar
Hsu, C. T. & Cheng, P. 1990 Thermal dispersion in a porous medium. Intl J. Heat Mass Transfer 33 (8), 15871597.Google Scholar
Jaworski, J. W. & Peake, N. 2013 Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. J. Fluid Mech. 723, 456479.Google Scholar
Jonathon, P. B. & Dam, C. P. 2008 Drag reduction of blunt trailing-edge airfoils. In International Colloquium on Bluff Bodies, Aerodynamics & Applications, Milano, Italy.Google Scholar
Khorrami, M. R. & Choudhari, M. M.2003 Application of passive porous treatment to slat trailing edge noise. NASA Tech. Rep. 212416.Google Scholar
Kladias, N. & Prasad, V. 1991 Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media. J. Thermophys. Heat Transfer 5 (4), 560576.Google Scholar
Koh, S. R., Meinke, M., Schröder, W., Zhou, B. & Gauger, N. R. 2014 Noise sources of trailing-edge turbulence controlled by porous media. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. AIAA 2014-3038.Google Scholar
Koha, S. R., Meinkea, M., Schrödera, W., Zhou, B. & Gauger, N. R. 2017 Impact of permeable surface on trailing-edge noise at varying lift. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado. AIAA 2017-3497.Google Scholar
Kohring, G. A. 1991 Calculation of the permeability of porous media using hydrodynamic cellular automata. J. Stat. Phys. 63 (1–2), 411418.Google Scholar
Larson, R. E. & Higdon, J. J. L. 1986 Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166, 449472.Google Scholar
Larson, R. E. & Higdon, J. J. L. 1987 Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow. J. Fluid Mech. 178, 119136.Google Scholar
Liu, H., Azarpeyvand, M., Wei, J. & Qu, Z. 2015 Tandem cylinder aerodynamic sound control using porous coating. J. Sound Vib. 334, 190201.Google Scholar
Liu, H., Wei, J. & Qu, Z. 2012 Prediction of aerodynamic noise reduction by using open-cell metal foam. J. Sound Vib. 331 (7), 14831497.Google Scholar
Liu, H., Wei, J. & Qu, Z. 2014 The interaction of porous material coating with the near wake of bluff body. J. Fluids Engng 136 (2), 021302.Google Scholar
Lumley, J. L. 1979 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.Google Scholar
Lyu, B. & Azarpeyvand, M. 2017 On the noise prediction for serrated leading edges. J. Fluid Mech. 826, 205234.Google Scholar
Lyu, B., Azarpeyvand, M. & Sinayoko, S. 2016 Prediction of noise from serrated trailing edges. J. Fluid Mech. 793, 556588.Google Scholar
Meegoda, N. J., King, I. P. & Arulanandan, K. 1989 An expression for the permeability of anisotropic granular media. Intl J. Numer. Anal. Meth. Geomech. 13 (6), 575598.Google Scholar
Mimeau, C., Mortazavi, I. & Cottet, G.-H. 2017 Passive control of the flow around a hemisphere using porous media. Eur. J. Mech. (B/Fluids) 65, 213226.Google Scholar
Naghib-Lahouti, A., Hangan, H. & Lavoie, P. 2015 Distributed forcing flow control in the wake of a blunt trailing edge profiled body using plasma actuators. Phys. Fluids 27 (3), 035110.Google Scholar
Naito, H. & Fukagata, K. 2012 Numerical simulation of flow around a circular cylinder having porous surface. Phys. Fluids 24 (11), 117102.Google Scholar
Oyewola, O., Djenidi, L. & Antonia, R. A. 2004 Influence of localised wall suction on the anisotropy of the Reynolds stress tensor in a turbulent boundary layer. Exp. Fluids 37 (2), 187193.Google Scholar
Ozkan, G. M. & Akilli, H. 2014 Flow control around bluff bodies by attached permeable plates. Intl J. Mech. Aerosp. Ind. Mechatron. Engng 8 (5), 10351039.Google Scholar
Ozkan, G. M., Akilli, H. & Sahin, B. 2013 Effect of high porosity screen on the near wake of a circular cylinder. In EPJ Web of Conferences, vol. 45, 01071. EDP Sciences.Google Scholar
Rae, W. H. & Pope, A. 1984 Low-Speed Wind Tunnel Testing. Wiley.Google Scholar
Revell, J. D., Kuntz, H. L., Balena, F. J., Horne, C., Storms, B. L. & Dougherty, R. P. 1997 Trailing-edge flap noise reduction by porous acoustic treatment. AIAA J. 1646, 1214.Google Scholar
Rothman, D. H. 1988 Cellular-automaton fluids: a model for flow in porous media. Geophysics 53 (4), 509518.Google Scholar
Sarradj, E. & Geyer, T. 2007 Noise generation by porous airfoils. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy. AIAA 2007-3719.Google Scholar
Schulze, J. & Sesterhenn, J. 2013 Optimal distribution of porous media to reduce trailing edge noise. J. Comput. Fluids 78, 4153.Google Scholar
Schwartz, L. M., Martys, N., Bentz, D. P., Garboczi, E. J. & Torquato, S. 1993 Cross-property relations and permeability estimation in model porous media. Phys. Rev. E 48 (6), 4584.Google Scholar
Showkat Ali, S. A., Liu, X. & Azarpeyvand, M. 2016 Bluff body flow and noise control using porous media. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. AIAA 2016-2754.Google Scholar
Snyder, L. J. & Stewart, W. E. 1966 Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres. AIChE J. 12 (1), 167173.Google Scholar
Standish, K. J. & Van Dam, C. P. 2003 Aerodynamic analysis of blunt trailing edge airfoils. J. Solar Energy Engng 125 (4), 479487.Google Scholar
Succi, S., Benzi, R. & Higuera, F. 1991 The lattice Boltzmann equation: a new tool for computational fluid-dynamics. Physica D 47 (1–2), 219230.Google Scholar
Sueki, T., Takaishi, T., Ikeda, M. & Arai, N. 2010 Application of porous material to reduce aerodynamic sound from bluff bodies. Fluid Dyn. Res. 42 (1), 015004.Google Scholar
Theunissen, R., Di Sante, A., Riethmuller, M. L. & Van den Braembussche, R. A. 2008 Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements. Exp. Fluids 44 (4), 591596.Google Scholar
Umnova, O., Attenborough, K., Standley, E. & Cummings, A. 2003 Behavior of rigid-porous layers at high levels of continuous acoustic excitation: theory and experiment. J. Acoust. Soc. Am. 114 (3), 13461356.Google Scholar
Vafai, K. & Kim, S. J. 1990 Fluid mechanics of the interface region between a porous medium and a fluid layer – an exact solution. Intl J. Heat Fluid Flow 11 (3), 254256.Google Scholar
Venkataraman, D. & Bottaro, A. 2012 Numerical modeling of flow control on a symmetric aerofoil via a porous, compliant coating. Phys. Fluids 24 (9), 093601.Google Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.Google Scholar
Winnemöller, T. & Dam, C. P. 2007 Design and numerical optimization of thick airfoils including blunt trailing edges. J. Aircraft 44 (1), 232240.Google Scholar
Zhou, B. Y., Gauger, N. R., Koh, S. R., Meinke, M. & Schröder, W. 2015 On the adjoint-based control of trailing-edge turbulence and noise minimization via porous material. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX. AIAA 2015-2530.Google Scholar