Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T04:09:53.921Z Has data issue: false hasContentIssue false

Topology of shallow-water waves on a rotating sphere

Published online by Cambridge University Press:  24 January 2025

Nicolas Perez*
Affiliation:
Centre de Recherche Astrophysique de Lyon (UMR CNRS 5574), Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, F-69230 Saint-Genis-Laval, France
Armand Leclerc
Affiliation:
Centre de Recherche Astrophysique de Lyon (UMR CNRS 5574), Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, F-69230 Saint-Genis-Laval, France
Guillaume Laibe
Affiliation:
Centre de Recherche Astrophysique de Lyon (UMR CNRS 5574), Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, F-69230 Saint-Genis-Laval, France
Pierre Delplace
Affiliation:
Laboratoire de Physique (UMR CNRS 5672), Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, F-69342 Lyon, France
*
Email address for correspondence: [email protected]

Abstract

Topological properties of the spectrum of shallow-water waves on a rotating spherical body are established. Particular attention is paid to spectral flow, i.e. the modes whose frequencies transit between the Rossby and inertia–gravity wavebands as the zonal wavenumber is varied. Organising the modes according to the number of zeros of their meridional velocity, we conclude that the net number of modes transiting between the shallow-water wavebands on the sphere is null, in contrast to the Matsuno spectrum. This difference can be explained by a miscount of zeros under the $\beta$-plane approximation. We corroborate this result with the analysis of Delplace et al. (Science, vol. 358, 2017, pp. 1075–1077) by showing that the curved metric discloses a pair of degeneracy points in the Weyl symbol of the wave operator, non-existent under the $\beta$-plane approximation, each of them bearing a Chern number of $-1$.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, C., Christensen-Dalsgaard, J. & Kurtz, D.W. 2010 Asteroseismology. Springer Science & Business Media.CrossRefGoogle Scholar
Ageev, D.S. & Iliasov, A.A. 2024 Unveiling topological modes on curved surfaces. Phys. Rev. B 109 (8), 085435.CrossRefGoogle Scholar
Berry, M.V. 1984 Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392 (1802), 4557.Google Scholar
Bridger, A.F.C. & Stevens, D.E. 1980 Long atmospheric waves and the polar-plane approximation to the earth's spherical geometry. J. Atmos. Sci. 37 (3), 534544.2.0.CO;2>CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2 (2), 023068.CrossRefGoogle Scholar
Del Genio, A.D. & Rossow, W.B. 1990 Planetary-scale waves and the cyclic nature of cloud top dynamics on venus. J. Atmos. Sci. 47 (3), 293318.2.0.CO;2>CrossRefGoogle Scholar
Dellar, P.J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere. J. Fluid Mech. 674, 174195.CrossRefGoogle Scholar
Delplace, P. 2022 Berry-chern monopoles and spectral flows. SciPost Phys. Lect. Notes 039.CrossRefGoogle Scholar
Delplace, P., Marston, J.B. & Venaille, A. 2017 Topological origin of equatorial waves. Science 358 (6366), 10751077.CrossRefGoogle ScholarPubMed
Faure, F. 2023 Manifestation of the topological index formula in quantum waves and geophysical waves. Annales Henri Lebesgue 6, 449492.CrossRefGoogle Scholar
Faure, F. & Zhilinskii, B. 2000 Topological chern indices in molecular spectra. Phys. Rev. Lett. 85 (5), 960.CrossRefGoogle ScholarPubMed
Finnigan, C., Kargarian, M. & Efimkin, D.K. 2022 Equatorial magnetoplasma waves. Phys. Rev. B 105 (20), 205426.CrossRefGoogle Scholar
Fu, Y. & Qin, H. 2021 Topological phases and bulk-edge correspondence of magnetized cold plasmas. Nat. Commun. 12 (1), 3924.CrossRefGoogle ScholarPubMed
Fukui, T., Hatsugai, Y. & Suzuki, H. 2005 Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances. J. Phys. Soc. Japan 74 (6), 16741677.CrossRefGoogle Scholar
Garfinkel, C.I., Fouxon, I., Shamir, O. & Paldor, N. 2017 Classification of eastward propagating waves on the spherical earth. Q. J. R. Meteorol. Soc. 143 (704), 15541564.CrossRefGoogle ScholarPubMed
Gavriel, N. & Kaspi, Y. 2021 The number and location of jupiter's circumpolar cyclones explained by vorticity dynamics. Nat. Geosci. 14 (8), 559563.CrossRefGoogle Scholar
Gill, A.E. 1982 Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. Academic Press.Google Scholar
Gilman, P.A. 2000 Magnetohydrodynamic ‘shallow water’ equations for the solar tachocline. Astrophys. J. 544 (1), L79.CrossRefGoogle Scholar
Gneiting, C., Fischer, T. & Hornberger, K. 2013 Quantum phase-space representation for curved configuration spaces. Phys. Rev. A 88 (6), 062117.CrossRefGoogle Scholar
Green, R., Armas, J., de Boer, J. & Giomi, L. 2020 Topological waves in passive and active fluids on curved surfaces: a unified picture. SciPost Phys. 17, 060.Google Scholar
Haldane, F.D.M. 1988 Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61 (18), 2015.CrossRefGoogle ScholarPubMed
Hall, B.C. 2013 Quantum Theory for Mathematicians. Springer.CrossRefGoogle Scholar
Hough, S.S. 1898 V. On the application of harmonic analysis to the dynamical theory of the tides. Part 2. On the general integration of Laplace's dynamical equations. Phil. Trans. R. Soc. Lond. A 191, 139185.Google Scholar
Iga, K. 1995 Transition modes of rotating shallow water waves in a channel. J. Fluid Mech. 294, 367390.CrossRefGoogle Scholar
Jezequel, L. & Delplace, P. 2023 Mode-shell correspondence, a unifying phase space theory in topological physics. Part 1. Chiral number of zero-modes. arXiv:2310.05656.Google Scholar
Johnson, E.S. & Mc Phaden, M.J. 1993 Structure of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr. 23 (4), 608625.2.0.CO;2>CrossRefGoogle Scholar
Kaufman, A.N., Morehead, J.J., Brizard, A.J. & Tracy, E.R. 1999 Mode conversion in the Gulf of Guinea. J. Fluid Mech. 394, 175192.CrossRefGoogle Scholar
Khanikaev, A.B., Fleury, R., Mousavi, S.H. & Alu, A. 2015 Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6 (1), 8260.CrossRefGoogle Scholar
Kiladis, G.N., Wheeler, M.C., Haertel, P.T., Straub, K.H. & Roundy, P.E. 2009 Convectively coupled equatorial waves. Rev. Geophys. 47 (2), 2008RG000266.CrossRefGoogle Scholar
Leclerc, A., Laibe, G., Delplace, P., Venaille, A. & Perez, N. 2022 Topological modes in stellar oscillations. Astrophys. J. 940 (1), 84.CrossRefGoogle Scholar
Legarreta, J., Barrado-Izagirre, N., García-Melendo, E., Sanchez-Lavega, A. & Gómez-Forrellad, J.M. 2016 A large active wave trapped in jupiter's equator. Astron. Astrophys. 586, A154.CrossRefGoogle Scholar
Li, G. & Efimkin, D.K. 2023 Equatorial waves in rotating bubble-trapped superfluids. Phys. Rev. A 107 (2), 023319.CrossRefGoogle Scholar
Littlejohn, R.G. & Flynn, W.G. 1991 Geometric phases in the asymptotic theory of coupled wave equations. Phys. Rev. A 44 (8), 5239.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M.S. 1965 Planetary waves on a rotating sphere. II. Proc. R. Soc. Lond. A 284 (1396), 4068.Google Scholar
Longuet-Higgins, M.S. 1968 The eigenfunctions of laplace's tidal equation over a sphere. Phil. Trans. R. Soc. Lond. A 262 (1132), 511607.CrossRefGoogle Scholar
Margules, M. 1892 Luftbewegungen in einer rotierenden sphäroidschale. Sitz.ber. Akad. Wiss. Wien 101, 597626.Google Scholar
Matsuno, T. 1966 Quasi-geostrophic motions in the equatorial area. J. Met. Soc. Japan II 44 (1), 2543.CrossRefGoogle Scholar
Menou, K. & Rauscher, E. 2009 Atmospheric circulation of hot jupiters: a shallow three-dimensional model. Astrophys. J. 700 (1), 887.CrossRefGoogle Scholar
Monnier, J.D., Townsend, R.H.D., Che, X., Zhao, M., Kallinger, T., Matthews, J. & Moffat, A.F.J. 2010 Rotationally modulated g-modes in the rapidly rotating $\delta$ scuti star rasalhague ($\alpha$ ophiuchi). Astrophys. J. 725 (1), 1192.CrossRefGoogle Scholar
Müller, D., Kelly, B.G. & O'brien, J.J. 1994 Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), 1557.CrossRefGoogle ScholarPubMed
Müller, D. & O'Brien, J.J. 1995 Shallow water waves on the rotating sphere. Phys. Rev. E 51 (5), 4418.CrossRefGoogle ScholarPubMed
Munk, W.H. & Carrier, G.F. 1950 The wind-driven circulation in ocean basins of various shapes. Tellus 2 (3), 158167.CrossRefGoogle Scholar
Nash, L.M., Kleckner, D., Read, A., Vitelli, V., Turner, A.M. & Irvine, W.T.M. 2015 Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112 (47), 1449514500.CrossRefGoogle ScholarPubMed
Onuki, Y. 2020 Quasi-local method of wave decomposition in a slowly varying medium. J. Fluid Mech. 883, A56.CrossRefGoogle Scholar
Paldor, N. 2015 Shallow Water Waves on the Rotating Earth. Springer.CrossRefGoogle Scholar
Paldor, N., Fouxon, I., Shamir, O. & Garfinkel, C.I. 2018 The mixed Rossby–gravity wave on the spherical earth. Q. J. R. Meteorol. Soc. 144 (715), 18201830.CrossRefGoogle ScholarPubMed
Parker, J.B., Marston, J.B., Tobias, S.M. & Zhu, Z. 2020 Topological gaseous plasmon polariton in realistic plasma. Phys. Rev. Lett. 124 (19), 195001.CrossRefGoogle ScholarPubMed
Perez, N. 2022 Topological waves in geophysical and astrophysical fluids. PhD thesis, Ecole normale supérieure de lyon-ENS, Lyon, France.Google Scholar
Perez, N., Delplace, P. & Venaille, A. 2021 Manifestation of the berry curvature in geophysical ray tracing. Proc. R. Soc. A 477 (2248), 20200844.CrossRefGoogle Scholar
Perez, N., Delplace, P. & Venaille, A. 2022 Unidirectional modes induced by nontraditional coriolis force in stratified fluids. Phys. Rev. Lett. 128 (18), 184501.CrossRefGoogle ScholarPubMed
Perrot, M., Delplace, P. & Venaille, A. 2019 Topological transition in stratified fluids. Nat. Phys. 15 (8), 781784.CrossRefGoogle Scholar
Qin, H. & Fu, Y. 2023 Topological Langmuir-cyclotron wave. Sci. Adv. 9 (13), eadd8041.CrossRefGoogle ScholarPubMed
Rossby, C.-G. 1939 Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 3855.CrossRefGoogle Scholar
Rossby, C.G. 1948 On displacements and intensity changes of atmospheric vortices. J. Mar. Res. 7 (3), 175–187.Google Scholar
Sakazaki, T. & Hamilton, K. 2020 An array of ringing global free modes discovered in tropical surface pressure data. J. Atmos. Sci. 77 (7), 25192539.CrossRefGoogle Scholar
Shamir, O., Garfinkel, C.I., Gerber, E.P. & Paldor, N 2023 The Matsuno–Gill model on the sphere. J. Fluid Mech. 964, A32.CrossRefGoogle Scholar
Shankar, S., Bowick, M.J. & Marchetti, M.C. 2017 Topological sound and flocking on curved surfaces. Phys. Rev. X 7 (3), 031039.Google Scholar
Showman, A.P., Cho, J.Y.K. & Menou, K. 2010 Atmospheric circulation of exoplanets. Exoplanets 526, 471516.Google Scholar
Showman, A.P., Ingersoll, A.P., Achterberg, R. & Kaspi, Y. 2018 The global atmospheric circulation of saturn. In Saturn in the 21st Century (ed. K.H. Baines, F.M. Flasar, N. Krupp & T. Stallard), vol. 20, pp. 295–336. Cambridge University Press.CrossRefGoogle Scholar
Souslov, A., Van Zuiden, B.C., Bartolo, D. & Vitelli, V. 2017 Topological sound in active-liquid metamaterials. Nat. Phys. 13 (11), 10911094.CrossRefGoogle Scholar
Sprintall, J., Gordon, A.L., Murtugudde, R. & Susanto, R.D. 2000 A semiannual Indian ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res. 105 (C7), 1721717230.CrossRefGoogle Scholar
Stommel, H. 1948 The westward intensification of wind-driven ocean currents. EOS Trans. AGU 29 (2), 202206.Google Scholar
Tan, X. & Showman, A.P. 2020 Atmospheric circulation of tidally locked gas giants with increasing rotation and implications for white dwarf–brown dwarf systems. Astrophys. J. 902 (1), 27.CrossRefGoogle Scholar
Taşeli, H. 2003 Exact analytical solutions of the Hamiltonian with a squared tangent potential. J. Math. Chem. 34, 243251.CrossRefGoogle Scholar
Tauber, C., Delplace, P. & Venaille, A. 2019 A bulk-interface correspondence for equatorial waves. J. Fluid Mech. 868, R2.CrossRefGoogle Scholar
Thomson, W. 1880 1. On gravitational oscillations of rotating water. Proc. R. Soc. Edin. 10, 92100.CrossRefGoogle Scholar
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vasil, G.M., Lecoanet, D., Burns, K.J., Oishi, J.S. & Brown, B.P. 2019 Tensor calculus in spherical coordinates using jacobi polynomials. Part 1. Mathematical analysis and derivations. J. Comput. Phys. X 3, 100013.Google Scholar
Venaille, A. & Delplace, P. 2021 Wave topology brought to the coast. Phys. Rev. Res. 3 (4), 043002.CrossRefGoogle Scholar
Venaille, A., Onuki, Y., Perez, N. & Leclerc, A. 2023 From ray tracing to waves of topological origin in continuous media. SciPost Phys. 14 (4), 062.CrossRefGoogle Scholar
Wang, Z., Chong, Y., Joannopoulos, J.D. & Soljačić, M. 2009 Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461 (7265), 772775.CrossRefGoogle ScholarPubMed
Yoshida, K. 1960 A theory of the cromwell current (the equatorial undercurrent) and of the equatorial upwelling an interpretation in a similarity to a costal circulation. J. Oceanogr. Soc. Japan 15 (4), 159170.CrossRefGoogle Scholar
Zaqarashvili, T.V., et al. 2021 Rossby waves in astrophysics. Space Sci. Rev. 217, 193.CrossRefGoogle Scholar
Zaqarashvili, T.V., Oliver, R. & Ballester, J.L. 2009 Global shallow water magnetohydrodynamic waves in the solar tachocline. Astrophys. J. 691 (1), L41.CrossRefGoogle Scholar
Zeitlin, V. 2018 Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models. Oxford University Press.CrossRefGoogle Scholar
Zhu, Z., Li, C. & Marston, J.B. 2023 Topology of rotating stratified fluids with and without background shear flow. Phys. Rev. Res. 5 (3), 033191.CrossRefGoogle Scholar