Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T18:45:49.947Z Has data issue: false hasContentIssue false

Topological effects on vorticity evolution in confined stratified fluids

Published online by Cambridge University Press:  03 July 2015

R. Camassa
Affiliation:
University of North Carolina at Chapel Hill, Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, Chapel Hill, NC 27599, USA
G. Falqui
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Milano, I-20125, Italy
G. Ortenzi*
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Milano, I-20125, Italy Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di Bergamo, Dalmine (BG), I-24044, Italy
M. Pedroni
Affiliation:
Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione, Università di Bergamo, Dalmine (BG), I-24044, Italy
*
Email address for correspondence: [email protected]

Abstract

For a stratified incompressible Euler fluid under gravity confined by rigid boundaries, sources of vorticity are classified with the aim of isolating those which are sensitive to the topological configurations of density isopycnals, for both layered and continuous density variations. The simplest case of a two-layer fluid is studied first. This shows explicitly that topological sources of vorticity are present whenever the interface intersects horizontal boundaries. Accordingly, the topological separation of the fluid domain due to the interface–boundary intersections can contribute additional terms to the vorticity balance equation. This phenomenon is reminiscent of Klein’s ‘Kaffeelöffel’ thought-experiment for a homogeneous fluid (Klein, Z. Math. Phys., vol. 59, 1910, pp. 259–262), and it is essentially independent of the vorticity generation induced by the baroclinic term in the bulk of the fluid. In fact, the two-layer case is generalized to show that for the continuously stratified case topological vorticity sources are generically present whenever density varies along horizontal boundaries. The topological sources are expressed explicitly in terms of local contour integrals of the pressure along the intersection curves of isopycnals with domain boundaries, and their effects on vorticity evolution are encoded by an appropriate vector, termed here the ‘topological vorticity’.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1968 Gravity currents and related phenomena. J. Fluid Mech. 31, 209248.Google Scholar
Benjamin, T. B. 1986 On the Boussinesq model for two-dimensional wave motions in heterogeneous fluids. J. Fluid Mech. 165, 445474.Google Scholar
Bona, J. L., Lannes, D. & Saut, J.-C. 2008 Asymptotic models for internal waves. J. Math. Pures Appl. 89, 538566.Google Scholar
Camassa, R., Chen, S., Falqui, G., Ortenzi, G. & Pedroni, M. 2012 An inertia ‘paradox’ for incompressible stratified Euler fluids. J. Fluid Mech. 695, 330340.Google Scholar
Camassa, R., Chen, S., Falqui, G., Ortenzi, G. & Pedroni, M. 2013 Effects of inertia and stratification in incompressible ideal fluids: pressure imbalances by rigid confinement. J. Fluid Mech. 726, 404438.Google Scholar
Camassa, R., Chen, S., Falqui, G., Ortenzi, G. & Pedroni, M. 2014 Topological selection in stratified fluids: an example from air–water systems. J. Fluid Mech. 743, 534553.Google Scholar
Choi, W. & Camassa, R. 1999 Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 136.Google Scholar
Chumakova, L., Menzaque, F. E., Miklewsky, P. A., Rosales, R. R., Tabak, E. G. & Turner, C. V. 2009 Shear instability for stratified hydrostatic flows. Commun. Pure Appl. Maths 62, 183197.Google Scholar
Esler, J. G. & Pearce, J. D. 2011 Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555585.Google Scholar
Falkovich, G. 2011 Fluid Mechanics. A Short Course for Physicists. Cambridge University Press.Google Scholar
Klein, F. 1910 Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Z. Math. Phys. 59, 259262.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Majda, A. J. & Bertozzi, A. L. 2002 Vorticity and Incompressible Flow. Cambridge University Press.Google Scholar
Phillips, O. M. 1970 On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. 17, 435443.Google Scholar
Poincaré, H. 1893 Théorie des Tourbillons. G. Carré.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Smirnov, V. I. 1964 A Course of Higher Mathematics, vol. II. Pergamon.Google Scholar
von Kármán, T. 1940 The engineer grapples with nonlinear problems. Bull. Am. Math. Soc. 46, 615683.Google Scholar
Wibawa, M. S., Steele, S. C., Dahl, J. M., Rival, D. E., Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a vanishing wing. J. Fluid Mech. 695, 112134.Google Scholar
Wu, T. Y. 1981 Long waves in ocean and coastal waters. J. Engng Mech. 107, 501522.Google Scholar
Yih, C. 1980 Stratified Flows. Academic.Google Scholar