Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:45:12.815Z Has data issue: false hasContentIssue false

Tidally generated internal-wave attractors between double ridges

Published online by Cambridge University Press:  11 January 2011

P. ECHEVERRI*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
T. YOKOSSI
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
N. J. BALMFORTH
Affiliation:
Departments of Mathematics and Earth and Ocean Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
T. PEACOCK
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

A study is presented of the generation of internal tides by barotropic tidal flow over topography in the shape of a double ridge. An iterative map is constructed to expedite the search for the closed ray paths that form wave attractors in this geometry. The map connects the positions along a ray path of consecutive reflections from the surface, which is double-valued owing to the presence of both left- and right-going waves, but which can be made into a genuine one-dimensional map using a checkerboarding algorithm. Calculations are then presented for the steady-state scattering of internal tides from the barotropic tide above the double ridges. The calculations exploit a Green function technique that distributes sources along the topography to generate the scattering, and discretizes in space to calculate the source density via a standard matrix inversion. When attractors are present, the numerical procedure appears to fail, displaying no convergence with the number of grid points used in the spatial discretizations, indicating a failure of the Green function solution. With the addition of dissipation into the problem, these difficulties are avoided, leading to convergent numerical solutions. The paper concludes with a comparison between theory and a laboratory experiment.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.2.0.CO;2>CrossRefGoogle Scholar
Balmforth, N. J. & Peacock, T. 2009 Tidal conversion by supercritical topography. J. Phys. Oceanogr. 39, 19651974.CrossRefGoogle Scholar
Balmforth, N. J., Spiegel, E. A. & Tresser, C. 1995 Checkerboard maps. Chaos 5 (1), 216226.CrossRefGoogle ScholarPubMed
Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.CrossRefGoogle Scholar
Echeverri, P., Flynn, M. R., Winters, K. B. & Peacock, T. 2009 Low-mode internal tide generation by topography: an experimental and numerical investigation. J. Fluid Mech. 636, 91108.CrossRefGoogle Scholar
Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.CrossRefGoogle Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Grisouard, N., Staquet, C. & Pairaud, I. 2008 Numerical simulation of a two-dimensional internal wave attractor. J. Fluid Mech. 614, 114.CrossRefGoogle Scholar
Hazewinkel, J., Van Breevoort, P., Dalziel, S. B. & Maas, L. R. M. 2008 Observations on the wavenumber spectrum and evolution of an internal wave attractor. J. Fluid Mech. 598, 373382.CrossRefGoogle Scholar
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.CrossRefGoogle Scholar
Jan, S., Lien, R. C. & Ting, C. H. 2008 Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr. 64, 789802.CrossRefGoogle Scholar
Lam, F. P. A. & Maas, L. R. M. 2008 Internal wave focusing revisited; a reanalysis and new theoretical links. Fluid Dyn. Res. 40, 95122.CrossRefGoogle Scholar
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.CrossRefGoogle Scholar
Maas, L. R. M. 2005 Wave attractors – linear yet nonlinear. Intl J. Bifurcation Chaos 15, 27572782.Google Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observation of an internal wave attractor in a confined stably-stratified fluid. Nature 388, 557561.CrossRefGoogle Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.CrossRefGoogle Scholar
Manders, A. M. M., Maas, L. R. M. & Gerkema, T. 2004 Observations of internal tides in the Mozambique Channel. J. Geophys. Res. 109, C12034.Google Scholar
Nycander, J. 2006 Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech. 567, 415432.CrossRefGoogle Scholar
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.CrossRefGoogle Scholar
Ogilvie, G. I. & Lin, D. N. C. 2004 Tidal dissipation in rotating giant planets. Astrophys. J. 610 (1), 477509.Google Scholar
Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr. 38, 235242.Google Scholar
Pétrélis, F., LlewellynSmith, S. G. Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36, 10531071.CrossRefGoogle Scholar
Pingree, R. D. & New, A. L. 1989 Downward propagation of internal tide energy into the Bay of Biscay. Deep Sea Res. A 36, 735758.CrossRefGoogle Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435, 103144.CrossRefGoogle Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.Google Scholar
Rieutord, M. & Valdettaro, L. 2010 Viscous dissipation by tidally forced inertial modes in a rotating spherical shell. J. Fluid Mech. 643, 363394.CrossRefGoogle Scholar
Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Hawaiian Ridge. Science 301, 355357.CrossRefGoogle ScholarPubMed
St Laurent, L. C. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.2.0.CO;2>CrossRefGoogle Scholar
St Laurent, L. C., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep Sea Res. I 50, 9871003.CrossRefGoogle Scholar
Tang, W. & Peacock, T. 2010 Lagrangian coherent structures and internal wave attractors. Chaos 20, 017508.CrossRefGoogle ScholarPubMed
Tilgner, A. 1999 Driven inertial oscillations in spherical shells. Phys. Rev. E 59, 17891794.Google Scholar
Wunsch, C. 1969 Progressive internal waves on slopes. J. Fluid Mech. 35, 131141.CrossRefGoogle Scholar
Zhao, Z., Klemas, V., Zheng, Q. & Yan, X. H. 2004 Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett. 31, L06302.CrossRefGoogle Scholar