Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T14:18:48.011Z Has data issue: false hasContentIssue false

Tidal conversion and turbulence at a model ridge: direct and large eddy simulations

Published online by Cambridge University Press:  09 January 2013

Narsimha R. Rapaka
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Bishakhdatta Gayen
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
Sutanu Sarkar*
Affiliation:
Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: [email protected]

Abstract

Direct and large eddy simulations are performed to study the internal waves generated by the oscillation of a barotropic tide over a model ridge of triangular shape. The objective is to go beyond linear theory and assess the role of nonlinear interactions including turbulence in situations with low tidal excursion number. The criticality parameter, defined as the ratio of the topographic slope to the characteristic slope of the tidal rays, is varied from subcritical to supercritical values. The barotropic tidal forcing is also systematically increased. Numerical results of the energy conversion are compared with linear theory and, in laminar flow at low forcing, they agree well in subcritical and supercritical cases but not at critical slope angle. In critical and supercritical cases with higher forcing, there are convective overturns, turbulence and significant reduction (as much as 25 %) of the radiated wave flux with respect to laminar flow results. Analysis of the baroclinic energy budget and spatial modal analysis are performed to understand the reduction. The near-bottom velocity is intensified at critical angle slope leading to a radiated internal wave beam as well as an upslope bore of cold water with a thermal front. In the critical case, the entire slope has turbulence while, in the supercritical case, turbulence originates near the top of the topography where the slope angle transitions through the critical value. The phase dependence of turbulence within a tidal cycle is examined and found to differ substantially between the ridge slope and the ridge top where the beams from the two sides cross.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.Google Scholar
Aucan, J., Merrifield, M. A., Luther, D. S. & Flament, P. 2006 Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36, 12021219.Google Scholar
Balmforth, N. J., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.Google Scholar
Bell, T. H. 1975a Lee waves in stratified fluid with simple harmonic time dependence. J. Fluid Mech. 67, 705722.Google Scholar
Bell, T. H. 1975b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320327.CrossRefGoogle Scholar
Cacchione, D. A., Pratson, L. F. & Ogston, A. S. 2002 The shaping of continental slopes by internal tides. Science 296, 724727.Google Scholar
Carter, G. S. & Gregg, M. C. 2002 Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr. 32, 31453165.Google Scholar
Carter, G. S., Merrifield, M. A., Becker, J. M., Katsumata, K., Gregg, M. C., Luther, D. S., Levine, M. D., Boyd, T. J. & Firing, Y. L. 2008 Energetics of ${m}_{2} $ barotropic-to-baroclinic tidal conversion at the Hawaiian islands. J. Phys. Oceanogr. 38, 22052223.Google Scholar
Echeverri, P., Flynn, M. R., Winters, K. B. & Peacock, T. 2009 Low-mode internal tide generation by topography: an experimental and numerical investigation. J. Fluid Mech. 636, 91108.Google Scholar
Fletcher, C. A. J. 1991 Computational Techniques for Fluid Dynamics, 2nd edn. Springer.Google Scholar
Gayen, B. & Sarkar, S. 2010 Turbulence during the generation of internal tide on a critical slope. Phys. Rev. Lett. 104, 218502.Google Scholar
Gayen, B. & Sarkar, S. 2011a Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 38, L14608.CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2011b Direct and large eddy simulations of internal tide generation at a near critical slope. J. Fluid Mech. 681, 4879.Google Scholar
Kang, D. & Fringer, O. 2012 Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42, 272290.Google Scholar
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Res. I 50, 321.Google Scholar
Klymak, J. M., Legg, S. & Pinkel, R. 2010 A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr. 40, 20592074.CrossRefGoogle Scholar
Klymak, J. M., Moum, J. N., Nash, J. D., Kunze, E., Girton, J. B., Carter, G. S., Lee, C, M., Sanford, T. B. & Gregg, M. C. 2006 An estimate of tidal energy lost to turbulence at the Hawaiian ridge. J. Phys. Oceanogr. 36, 11481164.CrossRefGoogle Scholar
Kunze, E. & Toole, J. M. 1997 Tidally driven vorticity, diurnal shear and turbulence atop Fieberling Seamount. J. Phys. Oceanogr. 27, 26632693.Google Scholar
Ledwell, J. R., Montgomery, K. L., Polzin, K. L., St Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence of enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179182.Google Scholar
Legg, S. & Huijts, K. M. H. 2006 Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res. II 53, 140156.Google Scholar
Legg, S. & Klymak, J. 2008 Internal hydraulic jumps and overturning generated by tidal flows over a tall steep ridge. J. Phys. Oceanogr. 38, 19491964.CrossRefGoogle Scholar
Lim, K., Ivey, G. N. & Jones, N. L. 2010 Experiments on the generation of internal waves over continental shelf topography. J. Fluid Mech. 663, 385400.Google Scholar
Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.2.0.CO;2>CrossRefGoogle Scholar
Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.Google Scholar
Lueck, R. G. & Mudge, T. D. 1997 Topographically induced mixing around a shallow seamount. Science 276, 18311833.Google Scholar
Moum, J. N., Caldwell, D. R., Nash, J. D. & Gunderson, G. D. 2002 Observations of boundary mixing over the continental slope. J. Phys. Oceanogr. 32, 21132130.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. I 45, 19772010.Google Scholar
Nash, J. D., Alford, M. H., Kunze, E., Martini, K. & Kelly, S. 2007 Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett. 34, L01605.Google Scholar
Nash, J. D., Kunze, E., Toole, J. M. & Schmitt, R. W. 2004 Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr. 34, 11171134.Google Scholar
Pétrélis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at submarine ridge. J. Phys. Oceanogr. 36, 10531071.Google Scholar
Polzin, K., Oakey, N. S., Toole, J. M. & Schmitt, R. W. 1996 Fine structure and microstructure characteristics across the north west Atlantic subtropical front. J. Geophys. Res. 101, 1411114121.Google Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.Google Scholar
Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C., Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S., Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. & Sanford, T. B. 2003 From tides to mixing along the Hawaiian ridge. Science 301, 355357.Google Scholar
Slinn, D. N. & Riley, J. J. 1998 Turbulent dynamics of a critically reflecting internal gravity wave. Theoret. Comput. Fluid Dyn. 11, 281303.Google Scholar
St Laurent, L. C. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.Google Scholar
St Laurent, L. C., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides at abrupt topography. Deep-Sea Res. I 50, 9871003.Google Scholar
St Laurent, L. C., Toole, J. M. & Schmitt, R. W. 2001 Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr. 31, 34763495.Google Scholar
Vreman, B., geurts, B. & Kuerten, H. 1997 Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357390.CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.Google Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5 (12), 31863196.Google Scholar
Zhang, H. P., King, B. & Swinney, H. L 2008 Resonant generation of internalwaves on a model continental slope. Phys. Rev. Lett. 100, 244504.Google Scholar