Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T17:17:37.999Z Has data issue: false hasContentIssue false

Thresholds for the formation of satellites in two-dimensional vortices

Published online by Cambridge University Press:  16 October 2008

M. R. TURNER
Affiliation:
Mathematics Research Institute, School of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK
A. D. GILBERT
Affiliation:
Mathematics Research Institute, School of Engineering, Computing and Mathematics, University of Exeter, Exeter EX4 4QF, UK

Abstract

This paper examines the evolution of a two-dimensional vortex which initially consists of an axisymmetric monopole vortex with a perturbation of azimuthal wavenumber m = 2 added to it. If the perturbation is weak, then the vortex returns to an axisymmetric state and the non-zero Fourier harmonics generated by the perturbation decay to zero. However, if a finite perturbation threshold is exceeded, then a persistent nonlinear vortex structure is formed. This structure consists of a coherent vortex core with two satellites rotating around it.

The paper considers the formation of these satellites by taking an asymptotic limit in which a compact vortex is surrounded by a weak skirt of vorticity. The resulting equations match the behaviour of a normal mode riding on the vortex with the evolution of fine-scale vorticity in a critical layer inside the skirt. Three estimates of inviscid thresholds for the formation of satellites are computed and compared: two estimates use qualitative diagnostics, the appearance of an inflection point or neutral mode in the mean profile. The other is determined quantitatively by solving the normal mode/critical-layer equations numerically. These calculations are supported by simulations of the full Navier–Stokes equations using a family of profiles based on the tanh function.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bajer, K., Bassom, A. P. & Gilbert, A. D. 2001 Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395411.CrossRefGoogle Scholar
Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 2001 Disturbing vortices. J. Fluid Mech. 426, 95133 (referred to herein as BLSY).CrossRefGoogle Scholar
Barba, L. A. 2006 Self-organization of vortex multipoles at high Reynolds number. Phys. Rev. E 73, 065303(R).Google Scholar
Barba, L. A. & Leonard, A. 2007 Emergence and evolution of tripole vortices from net-circulation initial conditions. Phys. Fluids 19 (1), 017101.CrossRefGoogle Scholar
Bassom, A. P. & Gilbert, A. D. 1998 The spiral wind-up of vorticity in an inviscid planar vortex. J. Fluid Mech. 371, 109140.CrossRefGoogle Scholar
Bernoff, A. J. & Lingevitch, J. F. 1994 Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 37173723.CrossRefGoogle Scholar
Briggs, R. J., Daugherty, J. D. & Levy, R. H. 1970 Role of Landau damping in crossed-field electron beams and inviscid shear flow. Phys. Fluids 13, 421432.CrossRefGoogle Scholar
Carton, X. & Legras, B. 1994 The life-cycle of tripoles in two-dimensional incompressible flows. J. Fluid Mech. 267, 5382.CrossRefGoogle Scholar
Dritschel, D. G. 1989 On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech. 206, 193221.CrossRefGoogle Scholar
Dritschel, D. G. 1998 On the persistence of non-axisymmetric vortices in inviscid two-dimensional flows. J. Fluid Mech. 371, 141155.CrossRefGoogle Scholar
Fornberg, B. 1977 A numerical study of 2-D turbulence. J. Comput. Phys. 25, 131.CrossRefGoogle Scholar
Hall, I. M., Bassom, A. P. & Gilbert, A. D. 2003 a The effect of fine structure on the stability of planar vortices. Eur. J. Mech. B./Fluids 22, 179198.CrossRefGoogle Scholar
Hall, I. M., Bassom, A. P. & Gilbert, A. D. 2003 b The effect of viscosity on the stability of planar vortices with fine structure. Q. J. Mech. Appl. Maths 56 (4), 649657.CrossRefGoogle Scholar
Heijst, G. J. F. van, Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.CrossRefGoogle Scholar
Koumoutsakos, P. 1997 Inviscid axisymmetrization of an elliptical vortex. J. Comput. Phys. 138, 821857.CrossRefGoogle Scholar
Le Dizès, S. 2000 Non-axisymmetric vortices in two-dimensional flows. J. Fluid Mech. 406, 175198.CrossRefGoogle Scholar
Legras, B. & Dritschel, D. 1993 Vortex stripping and the generation of high vorticity gradients in two-dimensional flows. Appl. Sci. Res. 51, 445455.CrossRefGoogle Scholar
Llewellyn Smith, S. G. 1995 The influence of circulation on the stability of vortices to mode-one disturbances. Proc. R. Soc. Lond. A 451, 747755.Google Scholar
Macaskill, C., Bassom, A. P. & Gilbert, A. D. 2002 Nonlinear wind-up in a strained planar vortex. Eur. J. Mech. B./Fluids 21, 293306.CrossRefGoogle Scholar
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.CrossRefGoogle Scholar
Melander, M. V., McWilliams, J. C. & Zabusky, N. J. 1987 Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137159.CrossRefGoogle Scholar
Möller, J. D. & Montgomery, M. T. 1999 Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci. 56, 16741687.2.0.CO;2>CrossRefGoogle Scholar
Morel, Y. G. & Carton, X. J. 1994 Multipolar vortices in two-dimensional incompressible flows. J. Fluid Mech. 267, 2351.CrossRefGoogle Scholar
Pingree, R. D. & Le Cann, B. 1992 Anticyclonic eddy X91 in the southern bay of Biscay, May 1991 to February 1992. J. Geophys. Res. 97, 14 353–14 367.CrossRefGoogle Scholar
Rossi, L. F., Lingevitch, J. F. & Bernoff, A. J. 1997 Quasi-steady monopole and tripole attractors for relaxing vortices. Phys. Fluids 9 (8), 23292338.CrossRefGoogle Scholar
Schecter, D. A., Dubin, D. H. E., Cass, A. C., Driscoll, C. F., Lansky, I. M. & O'Neil, T. M. 2000 Inviscid damping of asymmetries on a two-dimensional vortex. Phys. Fluids 12 (10), 23972412.CrossRefGoogle Scholar
Thuburn, J. & Lagneau, V. 1999 Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a single-layer model of the winter Stratosphere. J. Atmos. Sci. 56, 689710.2.0.CO;2>CrossRefGoogle Scholar
Turner, M. R. & Gilbert, A. D. 2007 Linear and nonlinear decay of cat's eyes in two-dimensional vortices, and the link to Landau poles. J. Fluid Mech. 593, 255279.CrossRefGoogle Scholar
Turner, M. R., Gilbert, A. D. & Bassom, A. P. 2008 Neutral modes of a two-dimensional vortex and their link to persistent cat's eyes. Phys. Fluids 20 (2), 027101-1027101-10.CrossRefGoogle Scholar