Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T23:02:13.612Z Has data issue: false hasContentIssue false

Three-dimensional oblique water-entry problems at small deadrise angles

Published online by Cambridge University Press:  19 September 2012

Madeleine Rose Moore
Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK
S. D. Howison
Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK
J. R. Ockendon
Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK
J. M. Oliver*
Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, UK
*
Email address for correspondence: [email protected]

Abstract

This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets.

JFM classification

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Article last updated 07 March 2023

References

1. Armand, J.-L. & Cointe, R. 1987 Hydrodynamic impact analysis of a cylinder. Trans. ASME J. Offshore Mech. Arctic Engng 111, 109114.Google Scholar
2. Bird, J. C., Tsai, S. S. H. & Stone, H. A. 2009 Inclined to splash: triggering and inhibiting a splash with tangential velocity. New J. Phys. 11, 063017.CrossRefGoogle Scholar
3. Chekin, B. S. 1989 The entry of a wedge into an incompressible fluid. J. Appl. Math. Mech. 53 (3), 300307.CrossRefGoogle Scholar
4. Dobrovol’skaya, Z. N. 1969 On some problems of similarity flow of fluid with a free surface. J. Fluid Mech. 36 (4), 805829.CrossRefGoogle Scholar
5. Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.CrossRefGoogle Scholar
6. Garabedian, P. R. 1953 Oblique water entry of a wedge. Commun. Pure Appl. Math. 6 (2), 157165.CrossRefGoogle Scholar
7. Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649 (1), 135163.CrossRefGoogle Scholar
8. Howison, S. D., Morgan, J. D. & Ockendon, J. R. 1994 Patch cavitation in flow past a rigid body. Bubble Dyn. Interface Phenom. 3, 219226.CrossRefGoogle Scholar
9. Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2004 Oblique slamming, planing and skimming. J. Engng Math. 48, 321337.CrossRefGoogle Scholar
10. Howison, S. D., Ockendon, J. R., Oliver, J. M., Purvis, R. & Smith, F. T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 124.CrossRefGoogle Scholar
11. Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.CrossRefGoogle Scholar
12. Judge, C., Troesch, A. & Perlin, M. 2004 Initial water impact of a wedge at vertical and oblique angles. J. Engng Math. 48 (3), 279303.CrossRefGoogle Scholar
13. Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
14. Korobkin, A. A. 1982 Formulation of penetration problem as a variational inequality. Din. Sploshnoi Sredy 58, 7379.Google Scholar
15. Korobkin, A. A. 1988 Inclined entry of a blunt profile into an ideal fluid. Fluid Dyn. 23 (3), 443447.CrossRefGoogle Scholar
16. Korobkin, A. A. 2003 Cavitation in liquid impact problems. In Fifth International Symposium on Cavitation (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H. ). Kluwer.Google Scholar
17. Korobkin, A. A. & Scolan, Y.-M. 2006 Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J. Fluid Mech. 549, 343374.CrossRefGoogle Scholar
18. Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148.CrossRefGoogle Scholar
19. Miloh, T. 1991 On the oblique water-entry problem of a rigid sphere. J. Engng Math. 25 (1), 7792.CrossRefGoogle Scholar
20. Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2012 A note on oblique water-entry. J. Engng Math. (in press).CrossRefGoogle Scholar
21. Oliver, J. M. 2002 Water entry and related problems. DPhil thesis, University of Oxford.Google Scholar
22. Oliver, J. M. 2007 Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles. J. Fluid Mech. 572, 5985.CrossRefGoogle Scholar
23. Purvis, R. & Smith, F. T. 2004 Air–water interactions near droplet impact. Eur. J. Appl. Math. 15 (06), 853871.CrossRefGoogle Scholar
24. Reinhard, M., Korobkin, A. A. & Cooker, M. J. 2012 The bounce of a blunt body from a water surface at high horizontal speed. In 27th International Workshop on Water Waves and Floating Bodies, pp. 153–156.Google Scholar
25. de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108 (7), 074505.CrossRefGoogle ScholarPubMed
26. Schmieden, C. 1953 Der Aufschlag von Rotationskörpern auf eine Wasseroberfläche. Z. Angew. Math. Mech. 33 (4), 147151.CrossRefGoogle Scholar
27. Scolan, Y.-M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.CrossRefGoogle Scholar
28. Scolan, Y.-M. & Korobkin, A. A. 2012 Hydrodynamic impact (Wagner) problem and Galin’s theorem. In 27th International Workshop on Water Waves and Floating Bodies, pp. 165–168.Google Scholar
29. Semenov, Y. A. & Yoon, B.-S. 2009 Onset of flow separation for the oblique water impact of a wedge. Phys. Fluids 21, 1121031–11.CrossRefGoogle Scholar
30. Shiffman, M. & Spencer, D. C. 1951 The force of impact on a cone striking a water surface (vertical entry). Commun. Pure Appl. Math. 4 (4), 379417.CrossRefGoogle Scholar
31. Sneddon, I. N. 1966 Mixed Boundary Value Problems in Potential Theory. North-Holland.Google Scholar
32. von Kármán, T. 1929 The impact of seaplane floats during landing. NACA TN 321.Google Scholar
33. Wagner, H. 1932 Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12, 193215.CrossRefGoogle Scholar
34. Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.CrossRefGoogle ScholarPubMed