Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-21T05:20:25.195Z Has data issue: false hasContentIssue false

Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction

Published online by Cambridge University Press:  10 March 2009

R. A. HUMBLE*
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
G. E. ELSINGA
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
F. SCARANO
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
B. W. van OUDHEUSDEN
Affiliation:
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, T. C. Jr & Messiter, A. F. 1980 Analysis of two-dimensional interactions between shock waves and boundary layers. Annu. Rev. Fluid Mech. 12, 103138.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 442, 154.CrossRefGoogle Scholar
Andreopoulos, J. & Muck, K. C. 1987 Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows. J. Fluid Mech. 180, 405428.CrossRefGoogle Scholar
Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40, 24122422.CrossRefGoogle Scholar
Bookey, P., Wyckham, C. & Smits, A. J. 2005 Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions. AIAA Paper 2005-4899.CrossRefGoogle Scholar
Brucker, C. 1996 3-D Scanning particle image velocimetry: technique and application to a spherical cap wake flow. Appl. Sci. Res. 56, 157179.CrossRefGoogle Scholar
Chong, M. S., Soria, J., Perry, A. E., Chacin, J., Cantwell, B. J. & Na, Y. 1998 Turbulence structures of wall-bounded shear flows using DNS data. J. Fluid Mech. 357, 225247.CrossRefGoogle Scholar
Délery, J. & Marvin, J. G. 1986 Shock-wave boundary layer interactions. AGARDograph 280.Google Scholar
Delo, C. J., Kelso, R. M. & Smits, A. J. 2004 Three-dimensional structure of a low-Reynolds-number turbulent boundary layer. J. Fluid Mech. 512, 4783.CrossRefGoogle Scholar
Dolling, D. S. 2001 Fifty years of shock wave/boundary layer interaction research: what next? AIAA J. 39, 15171531.CrossRefGoogle Scholar
Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield. AIAA J. 21, 16281634.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dussauge, J.-P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aero. Sci. Technol. 10, 8591.CrossRefGoogle Scholar
Elena, M. & Lacharme, J. P. 1988 Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J. Theor. Appl. Mech. 7, 175190.Google Scholar
Elsinga, G. E. 2008 Tomographic particle image velocimetry: and its application to turbulent boundary layers. PhD Thesis, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.Google Scholar
Elsinga, G. E., Adrian, R. J., van Oudheusden, B. W. & Scarano, F. 2007 a Tomographic-PIV investigation of a high Reynolds number turbulent boundary layer. In Proc. 7th Intl Symp. on Particle Image Velocimetry, Rome, Italy, Sep. 11–14.Google Scholar
Elsinga, G. E., Kuik, D. J., van Oudheusden, B. W. & Scarano, F. 2007 b Investigation of the three-dimensional coherent structures in a turbulent boundary layer with tomographic-PIV. In Proc. 45th AIAA Aerospace Sciences Meeting & Exhibit, Reno. NV. Jan. 8–11.Google Scholar
Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Exps. Fluids 41, 933947.CrossRefGoogle Scholar
Elsinga, G. E., van Oudheusden, B. W. & Scarano, F. 2005 Evaluation of aero-optical distortion effects in PIV. Exps. Fluids 39, 246256.CrossRefGoogle Scholar
Erengil, M. E. & Dolling, D. S. 1993 Physical causes of separation shock unsteadiness in shock wave/turbulent boundary layer interactions. AIAA Paper 93-3134.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W. T., Longmire, E. K. & Marusic, I. 2005 Investigation in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Green, J. E. 1970 Interactions between shock waves and turbulent boundary layers. Prog. Aero. Sci. 11, 253340.CrossRefGoogle Scholar
Hankey, W. L. Jr. & Holden, M. S. 1975 Two-dimensional shock-wave boundary layer interactions in high-speed flows. AGARDograph 203.Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Herman, G. T. & Lent, A. 1976 Iterative reconstruction algorithms. Comput. Biol. Med. 6, 273294.CrossRefGoogle ScholarPubMed
Hinsch, K. D. 2002 Holographic particle image velocimetry. Meas. Sci. Technol. 13, R61R72.CrossRefGoogle Scholar
Hou, Y. X. 2003 Particle image velocimetry study of shock-induced turbulent boundary layer separation. PhD Thesis, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin.CrossRefGoogle Scholar
Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exps. Fluids 43, 173183.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Klebanoff, P. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Rep. 1247.Google Scholar
Knight, D. D. & Degrez, G. 1998 Shock wave boundary layer interactions in high speed flows: a critical survey of current numerical prediction capabilities. Advisory Rep. 319, AGARD 2:1. 1–1.35.Google Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Pereira, F. & Gharib, M. 2002 Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas. Sci. Technol. 13, 683694.CrossRefGoogle Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.CrossRefGoogle Scholar
Plotkin, K. J. 1975 Shock wave oscillation driven by turbulent boundary-layer fluctuations. AIAA J. 13, 10361040.CrossRefGoogle Scholar
Poggie, J. & Smits, A. J. 2001 Shock unsteadiness in a reattaching shear layer. J. Fluid Mech. 429, 155185.CrossRefGoogle Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.CrossRefGoogle Scholar
Samimy, M., Arnette, S. A. & Elliot, G. S. 1994 Streamwise structures in a turbulent supersonic boundary layer. Phys. Fluids 6, 10811083.CrossRefGoogle Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids 3, 19151923.CrossRefGoogle Scholar
Schrijer, F. F. J. & Scarano, F. 2007 Particle slip compensation in steady compressible flows. In Proc. 7th Intl Symposium on Particle Image Velocimetry, Rome, Italy, Sept. 11–14.Google Scholar
Schrijer, F. F. J., Scarano, F. & van Oudheusden, B. W. 2006 Application of PIV in a Mach 7 double-ramp flow. Exps. Fluids 41, 353363.CrossRefGoogle Scholar
Schröder, A., Geisler, R., Elsinga, G. E., Scarano, F. & Dierksheide, U. 2007 Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic PIV. Exps. Fluids 44, 305316.CrossRefGoogle Scholar
Smith, M. W. & Smits, A. J. 1995 Visualization of the structure of supersonic turbulent boundary layers. Exps. Fluids 18, 288302.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd Edn.American Institute of Physics.Google Scholar
Soloff, S. M., Adrian, R. J. & Liu, Z.-C. 1997 Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, pp. 14411454.CrossRefGoogle Scholar
Spina, E. F., Donovan, J. F. & Smits, A. J. 1991 On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293327.CrossRefGoogle Scholar
Thomas, F. O., Putman, C. M. & Chu, H. C. 1994 On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction. Exps. Fluids 18, 6981.CrossRefGoogle Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Ünalmis, Ö. H. & Dolling, D. S. 1998 Experimental study of causes of unsteadiness of shock-induced turbulent separation. AIAA J. 36, 371378.CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exps. Fluids 39, 10961100.CrossRefGoogle Scholar
Wieneke, B. 2007 Volume self-calibration for stereo-PIV and tomographic-PIV. In Proc. 7th Intl Symp. on Particle Image Velocimetry, Rome, Italy, Sep. 11–14.Google Scholar
Wu, M. & Martin, M. P. 2007 Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 45, 879889.CrossRefGoogle Scholar
Wu, M. & Martin, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar