Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T12:38:06.369Z Has data issue: false hasContentIssue false

Three-dimensional effects in hovering flapping flight

Published online by Cambridge University Press:  23 May 2012

T. Jardin
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, UPR3346, Département Fluides, Thermiques, Combustion, SP2MI, Téléport 2, Bd Marie et Pierre Curie, F-86962 Futuroscope Chasseneuil CEDEX, France
A. Farcy
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, UPR3346, Département Fluides, Thermiques, Combustion, SP2MI, Téléport 2, Bd Marie et Pierre Curie, F-86962 Futuroscope Chasseneuil CEDEX, France
L. David
Affiliation:
Institut Pprime, CNRS-Université de Poitiers-ENSMA, UPR3346, Département Fluides, Thermiques, Combustion, SP2MI, Téléport 2, Bd Marie et Pierre Curie, F-86962 Futuroscope Chasseneuil CEDEX, France

Abstract

This paper aims at understanding the influence of three-dimensional effects in hovering flapping flight. Numerical simulations at a Reynolds number of 1000 are performed to compare two types of flapping kinematics whose plunging phase is characterized by either a rectilinear translation or a revolving motion. In this way, we are able to isolate the three-dimensional effects induced by the free end condition from that induced by the spanwise incident velocity gradient (and the associated implicit Coriolis and centrifugal effects). In the rectilinear translation case, the analysis of the wake and of the aerodynamic loads reveals that the wingspan can be compartmented into three distinct regions whether it is predominantly subjected to an unstable two-dimensional flow, a stable three-dimensional flow or both two-dimensional and three-dimensional effects. It is found that this partitioning exhibits common features for three different aspect ratios of the wing. In conjunction with the previous results of Ringuette, Milano & Gharib (J. Fluid Mech., vol. 581, 2007, pp. 453–468), this suggests that the influence of the tip vortex over the wingspan is driven by a characteristic length scale. In addition, this length scale matches the position of the connecting point between leading and tip vortices observed in the revolving case, providing insight into the connecting process. In both translating and revolving cases, leading edge vortex attachment and strong spanwise velocities are found to be strongly correlated phenomena. Spanwise velocities (that mostly confine at the periphery of the vortices), together with downward velocities, do not only affect the leading edge vortex but also act as an inhibitor for the trailing edge vortex growth. As a consequence, cross-wake interactions between leading and trailing edge vortices are locally limited, hence contributing to flow stabilization.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211, 239257.CrossRefGoogle ScholarPubMed
2. Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading edge vortex on insect wings. Nature 412, 729733.CrossRefGoogle Scholar
3. Birch, J. M. & Dickinson, M. H. 2003 The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206, 22572272.CrossRefGoogle ScholarPubMed
4. Bos, F. M., Lentink, D., Van Oudheusden, B. W. & Bijl, H. 2008 Influence of wing kinematics in hovering insect flight. J. Fluid Mech. 594, 341368.CrossRefGoogle Scholar
5. David, L., Jardin, T., Braud, P. & Farcy, A. 2011 Time-resolved scanning tomography PIV measurements around a flapping wing. Exp. Fluids, doi:10.1007/s00348-011-1148-5.Google Scholar
6. Dickinson, M. H. & Gotz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174, 4564.CrossRefGoogle Scholar
7. Dickinson, M. H., Lehmann, F. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.CrossRefGoogle ScholarPubMed
8. Ellington, C. P. 1984 The aerodynamics of hovering insect flight. i.-v. Phil. Trans. R. Soc. Lond. B 305, 1181.Google Scholar
9. Ellington, C. P., van den Berg, C., Willmott, A. & Thomas, A. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
10. Jardin, T., David, L. & Farcy, A. 2009 Characterization of vortical structures and loads based on time-resolved PIV for asymmetric hovering flapping flight. Exp. Fluids 46, 847857.CrossRefGoogle Scholar
11. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
12. Kim, D. & Gharib, M. 2010 Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329339.CrossRefGoogle Scholar
13. Lentink, D. & Dickinson, M. H. 2009a Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Expl Biol. 212, 26912704.CrossRefGoogle ScholarPubMed
14. Lentink, D. & Dickinson, M. H. 2009b Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.CrossRefGoogle ScholarPubMed
15. Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 93, 4763.CrossRefGoogle Scholar
16. Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plate with artificial evolution. J. Fluid Mech. 534, 403409.CrossRefGoogle Scholar
17. Poelma, C., Dickson, W. B. & Dickinson, M. H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically scaled flapping wing. Exp. Fluids 41, 213225.CrossRefGoogle Scholar
18. Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.CrossRefGoogle Scholar
19. Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206, 41914208.CrossRefGoogle ScholarPubMed
20. Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.CrossRefGoogle Scholar
21. Shyy, W., Trizila, P., Kang, C. K. & Aono, H. 2009 Can tip vortices enhance lift of a flapping wing? AIAA J. 47, 289293.CrossRefGoogle Scholar
22. Sun, M. & Lan, S. L. 2004 A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J. Expl Biol. 207, 18871901.CrossRefGoogle ScholarPubMed
23. Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
24. Wang, Z. J. 2004 The role of drag in insect hovering. J. Expl Biol. 207, 41474155.CrossRefGoogle ScholarPubMed
25. Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar