Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T17:22:22.504Z Has data issue: false hasContentIssue false

Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

Published online by Cambridge University Press:  29 January 2013

G. A. Leslie
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
S. K. Wilson
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK
B. R. Duffy
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK

Abstract

The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study ‘full-ring’ solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A. & Jin, B. 2004 Rimming flows within a rotating horizontal cylinder: asymptotic analysis of the thin-film lubrication equations and stability of their solutions. J. Engng Maths 50, 99120.CrossRefGoogle Scholar
Alekseenko, S. V., Bobylev, A. V. & Markovich, D. M. 2008 Rivulet flow on the outer surface of an inclined cylinder. J. Engng Thermophys. 4, 259272.CrossRefGoogle Scholar
Allen, R. F. & Biggin, C. M. 1974 Longitudinal flow of a lenticular liquid filament down an inclined plane. Phys. Fluids 17, 287291.CrossRefGoogle Scholar
Ashmore, J., Hosoi, A. E. & Stone, H. A. 2003 The effect of surface tension on rimming flows in a partially filled rotating cylinder. J. Fluid Mech. 479, 6598.CrossRefGoogle Scholar
Benilov, E. S. 2006 Does surface tension stabilize liquid films inside a rotating horizontal cylinder? Part 2: multidimensional disturbances. Stud. Appl. Maths 116, 120.CrossRefGoogle Scholar
Benilov, E. S. 2009 On the stability of shallow rivulets. J. Fluid Mech. 636, 455474.CrossRefGoogle Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 91118.CrossRefGoogle Scholar
Benilov, E. S., Benilov, M. S. & O’Brien, S. G. B. 2009 Existence and stability of regularized shock solutions, with applications to rimming flows. J. Engng Maths 63, 197212.CrossRefGoogle Scholar
Benilov, E. S., Lapin, V. N. & O’Brien, S. B. G. 2012 On rimming flows with shocks. J. Engng Maths 75, 4962.CrossRefGoogle Scholar
Benilov, E. S. & O’Brien, S. B. G. 2005 Inertial instability of a liquid film inside a rotating horizontal cylinder. Phys. Fluids 17, 052106.CrossRefGoogle Scholar
Chen, P.-J., Tsai, Y.-T., Liu, T.-J & Wu, P.-Y. 2007 Low volume fraction rimming flow in a rotating horizontal cylinder. Phys. Fluids 19, 128107.CrossRefGoogle Scholar
Chicharro, R., Vazquez, A. & Manasseh, R. 2011 Characterization of patterns in rimming flow. Exp. Therm. Fluid Sci. 35, 11841192.CrossRefGoogle Scholar
Daerr, A., Eggers, J., Limat, L. & Valade, N. 2011 General mechanism for the meandering instability of rivulets of Newtonian fluids. Phys. Rev. Lett. 106, 184501.CrossRefGoogle ScholarPubMed
Deans, J. & Kucuka, S. 2011 The formation of banded condensate films in weak ammonia–water mixtures. J. Heat Transfer 133, 101505.CrossRefGoogle Scholar
Diez, J. A., González, A. G. & Kondic, L. 2009 On the breakup of fluid rivulets. Phys. Fluids 21, 082105.CrossRefGoogle Scholar
Duffy, B. R. & Moffatt, H. K. 1995 Flow of a viscous trickle on a slowly varying incline. Chem. Engng J. 60, 141146.Google Scholar
Duffy, B. R. & Moffatt, H. K. 1997 A similarity solution for viscous source flow on a vertical plane. Eur. J. Appl. Maths 8, 3747.CrossRefGoogle Scholar
Duffy, B. R. & Wilson, S. K. 1999 Thin-film and curtain flows on the outside of a rotating horizontal cylinder. J. Fluid Mech. 394, 2949.CrossRefGoogle Scholar
Evans, P. L., Schwartz, L. W. & Roy, R. V. 2004 Steady and unsteady solutions for coating flow on a rotating horizontal cylinder: two-dimensional theoretical and numerical modelling. Phys. Fluids 16, 27422756.CrossRefGoogle Scholar
Evans, P. L., Schwartz, L. W. & Roy, R. V. 2005 Three-dimensional solutions for coating flow on a rotating horizontal cylinder: theory and experiment. Phys. Fluids 17, 072102.CrossRefGoogle Scholar
Hinch, E. J. & Kelmanson, M. A. 2003 On the decay and drift of free-surface perturbations in viscous thin-film flow exterior to a rotating cylinder. Proc. R. Soc. Lond. A 459, 11931213.CrossRefGoogle Scholar
Hosoi, A. E. & Mahadevan, L. 1999 Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. Phys. Fluids 11, 97106.CrossRefGoogle Scholar
Hunt, R. 2008 Numerical solution of the free-surface viscous flow on a horizontal rotating elliptical cylinder. Numer. Meth. Partial Differ. Equ. 24, 10941114.CrossRefGoogle Scholar
Johnson, R. E. 1988 Steady-state coating flows inside a rotating horizontal cylinder. J. Fluid Mech. 190, 321342.CrossRefGoogle Scholar
Kelmanson, M. A. 2009 On inertial effects in the Moffatt–Pukhnachov coating-flow problem. J. Fluid Mech. 633, 327353.CrossRefGoogle Scholar
Kim, H.-Y., Kim, J.-H. & Kang, B. H. 2004 Meandering instability of a rivulet. J. Fluid Mech. 498, 245256.CrossRefGoogle Scholar
Le Grand-Piteira, N., Daerr, A. & Limat, L. 2006 Meandering rivulets on a plane: a simple balance between inertia and capillarity. Phys. Rev. Lett. 96, 254503.CrossRefGoogle Scholar
Leslie, G. A., Wilson, S. K. & Duffy, B. R. 2012 Thermoviscous coating and rimming flow. Q. J. Mech. Appl. Maths 65, 483511.CrossRefGoogle Scholar
Melo, F. & Douady, S. 1993 From solitary waves to static patterns via spatiotemporal intermittency. Phys. Rev. Lett. 71, 32833286.CrossRefGoogle ScholarPubMed
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 16, 651673.Google Scholar
Noakes, C. J., King, J. R. & Riley, D. S. 2006 On the development of rational approximations incorporating inertial effects in coating and rimming flows: a multiple-scales approach. Q. J. Mech. Appl. Maths 59, 163190.CrossRefGoogle Scholar
Perazzo, C. A. & Gratton, J. 2004 Navier–Stokes solutions for parallel flow in rivulets on an inclined plane. J. Fluid Mech. 507, 367379.CrossRefGoogle Scholar
Peterson, R. C., Jimack, P. K. & Kelmanson, M. A. 2001 On the stability of viscous free-surface flow supported by a rotating cylinder. Proc. R. Soc. Lond. A 457, 14271445.CrossRefGoogle Scholar
Pougatch, K. & Frigaard, I. 2011 Thin film flow on the inside surface of a horizontally rotating cylinder: steady state solutions and their stability. Phys. Fluids 23, 022102.CrossRefGoogle Scholar
Preziosi, L. & Joseph, D. D. 1988 The run-off condition for coating and rimming flows. J. Fluid Mech. 187, 99113.CrossRefGoogle Scholar
Pukhnachev, V. V. 1977 Motion of a liquid film on the surface of a rotating cylinder in a gravitational field. J. Appl. Mech. Tech. Phys. 18, 344351.CrossRefGoogle Scholar
Roy, R. V. & Schwartz, L. W. 1999 On the stability of liquid ridges. J. Fluid Mech. 391, 293318.CrossRefGoogle Scholar
Saber, H. H. & El-Genk, M. S. 2004 On the breakup of a thin liquid film subject to interfacial shear. J. Fluid Mech. 500, 113133.CrossRefGoogle Scholar
Schmuki, P. & Laso, M. 1990 On the stability of rivulet flow. J. Fluid Mech. 215, 125143.CrossRefGoogle Scholar
Seiden, G. & Thomas, P. J. 2011 Complexity, segretation, and pattern formation in rotating-drum flows. Rev. Mod. Phys. 83, 13231365.CrossRefGoogle Scholar
Shrager, G. R., Shtokolova, M. N. & Yakutenok, V. A. 2009 Formation of the free surface of a viscous fluid volume inside a rotating horizontal cylinder. Fluid Dyn. 44, 322327.CrossRefGoogle Scholar
Sullivan, J. M., Wilson, S. K. & Duffy, B. R. 2008 A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress. Q. J. Mech. Appl. Maths 61, 2561.CrossRefGoogle Scholar
Tanasijczuk, A. J., Perazzo, C. A. & Gratton, J. 2010 Navier–Stokes solutions for steady parallel-sided pendent rivulets. Eur. J. Mech. B. Fluids 29, 465471.CrossRefGoogle Scholar
Thiele, U. 2011 On the depinning of a drop of partially wetting liquid on a rotating cylinder. J. Fluid Mech. 671, 121136.CrossRefGoogle Scholar
Thoroddsen, S. T. & Mahadevan, L. 1997 Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Exp. Fluids 23, 113.CrossRefGoogle Scholar
Tougher, C. H., Wilson, S. K. & Duffy, B. R. 2009 On the approach to the critical solution in leading order thin-film coating and rimming flow. Appl. Math. Lett. 22, 882886.CrossRefGoogle Scholar
Towell, G. D. & Rothfeld, L. B. 1966 Hydrodynamics of rivulet flow. AIChE J. 12, 972980.CrossRefGoogle Scholar
Villegas-Díaz, M., Power, H. & Riley, D. S. 2005 Analytical and numerical studies of the stability of thin-film rimming flow subject to surface shear. J. Fluid Mech. 541, 317344.CrossRefGoogle Scholar
Williams, J., Hibberd, S., Power, H. & Riley, D. S. 2012 On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder. Phys. Fluids 24, 053103.CrossRefGoogle Scholar
Wilson, S. K. & Duffy, B. R. 1998 On the gravity-driven draining of a rivulet of viscous fluid down a slowly varying substrate with variation transverse to the direction of flow. Phys. Fluids 10, 1322.CrossRefGoogle Scholar
Wilson, S. K. & Duffy, B. R. 2005 Unidirectional flow of a thin rivulet on a vertical substrate subject to a prescribed uniform shear stress at its free surface. Phys. Fluids 17, 108105.CrossRefGoogle Scholar
Wilson, S. K., Duffy, B. R. & Hunt, R. 2002a A slender rivulet of a power-law fluid driven by either gravity or a constant shear stress at the free surface. Q. J. Mech. Appl. Maths 55, 385408.CrossRefGoogle Scholar
Wilson, S. K., Hunt, R. & Duffy, B. R. 2002b On the critical solutions in coating and rimming flow on a uniformly rotating horizontal cylinder. Q. J. Mech. Appl. Maths 55, 357383.CrossRefGoogle Scholar
Wilson, S. K., Sullivan, J. M. & Duffy, B. R. 2011 The energetics of the breakup of a sheet and of a rivulet on a vertical substrate in the presence of a uniform surface shear stress. J. Fluid Mech. 674, 281306.CrossRefGoogle Scholar
Yatim, Y. M., Duffy, B. R., Wilson, S. K. & Hunt, R. 2011 Similarity solutions for unsteady gravity-driven slender rivulets. Q. J. Mech. Appl. Maths 64, 455480.CrossRefGoogle Scholar