Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T05:36:21.130Z Has data issue: false hasContentIssue false

Third-order structure function relations for quasi-geostrophic turbulence

Published online by Cambridge University Press:  23 January 2007

ERIK LINDBORG*
Affiliation:
Linné Flow Centre, Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

Abstract

We derive two third-order structure function relations for quasi-geostrophic turbulence, one for the forward cascade of potential enstrophy and one for the inverse cascade of energy. These relations are the counterparts of Kolmovorov's (1941) four-fifths law for the third-order longitudinal structure functions of three-dimensional turbulence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babiano, A. & Dubos, T. 2005 On the contribution of coherent vortices to the two-dimensional inverse energy cascade. J. Fluid Mech. 529, 97116.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bofetta, G., Celani, A. & Vergassola, M. 2000 Inverse cascade in two-dimensional turbulence: deviations from Gaussianity. Phys. Rev. E 61, R29R32.CrossRefGoogle Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci 28, 10871095.2.0.CO;2>CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence. Cambridge University Press.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 Dissipation of energy in the locally isotropic turbulence. Dokl. Adad. Nauk SSSR 32 (1). English transl. Proc. R. Soc. Lond. A 434 (1991), 15–17.Google Scholar
Kraichnan, R. H. 1970 Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525535.CrossRefGoogle Scholar
Kurien, S., Smith, L. & Wingate, B. 2006 On the two-point correlation of potential vorticity in rotating and stratified turbulence. J. Fluid Mech. 555, 131140.CrossRefGoogle Scholar
Lindborg, E. 1996 A note on Kolmovorov's third-order structure-function law, the local isotropy hypothesis and the pressure-velocity correlation. J. Fluid. Mech. 326, 343356.CrossRefGoogle Scholar
Lindborg, E. 1999 Can the atmospheric kinetic energy be explained by two-dimensional turbulence? J. Fluid. Mech. 388, 259288.CrossRefGoogle Scholar
Lindborg, E. & Alvelius, K. 2000 The kinetic energy spectrum of the two-dimensional enstrophy turbulence cascade. Phys. Fluids 12, 945947.CrossRefGoogle Scholar
McWilliams, J. C., Weiss, J. B. & Yavneh, I. 1994 Anisotropy and coherent vortex structures in planetary turbulence. Science 264, 410413.CrossRefGoogle ScholarPubMed
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2. The MIT Press.Google Scholar