Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T04:00:32.376Z Has data issue: false hasContentIssue false

A thin drop sliding down an inclined plate

Published online by Cambridge University Press:  20 May 2015

E. S. Benilov*
Affiliation:
Department of Mathematics and Statistics, University of Limerick, Ireland
M. S. Benilov
Affiliation:
Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal, Portugal Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal
*
Email address for correspondence: [email protected]

Abstract

We examine two- and three-dimensional drops steadily sliding down an inclined plate. The contact line of the drop is governed by a model based on the Navier-slip boundary condition and a prescribed value for the contact angle. The drop is thin, so the lubrication approximation can be used. In the three-dimensional case, we also assume that the drop is sufficiently small (its size is smaller than the capillary scale). These assumptions enable us to determine the shape of the drop and derive an asymptotic expression for its velocity. For three-dimensional drops, this expression is matched to a qualitative estimate of Kim et al. (J. Colloid Interface Sci., vol. 247, 2002, pp. 372–380) obtained for arbitrary drops, i.e. not necessarily thin and small. The matching fixes an undetermined coefficient in Kim, Lee and Kang’s estimate, turning it into a quantitative result.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascher, U. M., Mattheij, R. M. M. & Russell, R. D. 1995 Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics, vol. 13. SIAM.Google Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 81118.Google Scholar
Benilov, E. S., Chapman, S. J., Mcleod, J. B., Ockendon, J. R. & Zubkov, V. S. 2010 On liquid films on an inclined plate. J. Fluid Mech. 663, 5369.Google Scholar
Bertozzi, A. L. & Brenner, M. P. 1997 Linear stability and transient growth in driven contact lines. Phys. Fluids 9, 530539.CrossRefGoogle Scholar
Bikerman, J. J. 1950 Sliding of drops from surfaces of different roughnesses. J. Colloid Sci. 5, 349359.CrossRefGoogle Scholar
Bowles, R. I. 1995 Upstream influence and the form of standing hydraulic jumps in liquid-layer flows on favourable slopes. J. Fluid Mech. 284, 6396.CrossRefGoogle Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Dormand, J. R. & Prince, P. J. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6, 1926.Google Scholar
Duchemin, L., Lister, J. R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.Google Scholar
Dussan V., E. B. & Chow, R. T.-P. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 129.Google Scholar
Furmidge, C. G. L. 1962 Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309324.CrossRefGoogle Scholar
Glassmaker, N. J., Jagota, A., Hui, C. Y., Noderer, W. L. & Chaudhury, M. K. 2007 Biologically inspired crack trapping for enhanced adhesion. Proc. Natl Acad. Sci. USA 104, 1078610791.Google Scholar
Hocking, L. M. 1981 Sliding and spreading of thin two-dimensional drops. J. Mech. Appl. Maths 34, 3755.Google Scholar
Hocking, L. M. & Rivers, A. D. 1982 The spreading of a drop by capillary action. J. Fluid Mech. 121, 425442.CrossRefGoogle Scholar
Huppert, H. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427439.Google Scholar
Jerrett, J. M. & de Bruyn, J. R. 1992 Finger instability of a gravitationally driven contact line. Phys. Fluids A 4, 234242.Google Scholar
Kim, H.-Y., Lee, H. J. & Kang, B. H. 2002 Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 247, 372380.Google Scholar
Koh, Y. Y., Lee, Y. C., Gaskell, P. H., Jimack, P. K. & Thompson, H. M. 2009 Droplet migration: quantitative comparisons with experiment. Eur. Phys. J. Spec. Top. 166, 117120.Google Scholar
Lacey, A. A. 1982 The motion with slip of a thin viscous droplet over a solid-surface. Stud. Appl. Maths 67, 217230.Google Scholar
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.Google Scholar
Limat, L. 2014 Drops sliding down an incline at large contact line velocity: what happens on the road towards rolling? J. Fluid Mech. 738, 14.Google Scholar
Podgorski, T., Flesselles, J.-M. & Limat, L. 2001 Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 87, 036102,1–4.Google Scholar
Puthenveettil, B. A., Senthilkumar, V. K. & Hopfinger, E. J. 2013 Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 2661.Google Scholar
Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503,1–4.CrossRefGoogle ScholarPubMed
Savva, N. & Kalliadasis, S. 2013 Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462491.Google Scholar
Schwartz, L. W., Roux, D. & Cooper-White, J. J. 2005 On the shapes of droplets that are sliding on a vertical wall. Physica D 209, 236244.Google Scholar
Shikhmurzaev, Y. U. D. 1993 The moving contact line on a smooth solid surface. Intl J. Multiphase Flow 19, 589610.Google Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2015 The asymptotics of the moving contact line: cracking an old nut. J. Fluid Mech. 764, 445462.CrossRefGoogle Scholar
Silvi, N. & Dussan V., E. B. 1985 On the rewetting of an inclined solid surface by a liquid. Phys. Fluids 28, 57.Google Scholar
Smith, J. D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R. E., McKinleya, G. H. & Varanasi, K. K. 2013 Droplet mobility on lubricant-impregnated surfaces. Soft Matt. 9, 17721780.Google Scholar
Snoeijer, J. H., Le Grand-Piteira, N., Limat, L., Stone, H. A. & Eggers, J. 2007 Cornered drops and rivulets. Phys. Fluids 19, 042104,1–10.Google Scholar
Thiele, U. & Knobloch, E. 2003 Front and back instability of a liquid film on a slightly inclined plate. Phys. Fluids A 15, 892907.CrossRefGoogle Scholar
Thiele, U., Neuffer, K., Bestehorn, M., Pomeau, Y. & Velarde, M. G. 2002 Sliding drops on an inclined plane. Collids Surf. A 206, 87104.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.Google Scholar
Wilson, S. D. R. & Jones, A. F. 1983 The entry of a falling film into a pool and the air-entrainment problem. J. Fluid Mech. 128, 219230.Google Scholar
Winkels, K. G., Peters, I. R., Evangelista, F., Riepen, M., Daerr, A., Limat, L. & Snoeijer, J. H. 2011 Receding contact lines: from sliding drops to immersion lithography. Eur. Phys. J. Spec. Top. 192, 195205.Google Scholar