Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T00:41:07.912Z Has data issue: false hasContentIssue false

A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects

Published online by Cambridge University Press:  04 February 2015

Z. Guo
Affiliation:
Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083, China
P. Lin*
Affiliation:
Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland, UK
*
Email address for correspondence: [email protected]

Abstract

In this paper, we develop a phase-field model for binary incompressible (quasi-incompressible) fluid with thermocapillary effects, which allows for the different properties (densities, viscosities and heat conductivities) of each component while maintaining thermodynamic consistency. The governing equations of the model including the Navier–Stokes equations with additional stress term, Cahn–Hilliard equations and energy balance equation are derived within a thermodynamic framework based on entropy generation, which guarantees thermodynamic consistency. A sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Moreover, some numerical examples including thermocapillary convections in a two-layer fluid system and thermocapillary migration of a drop are computed using a continuous finite element method. The results are compared with the corresponding analytical solutions and the existing numerical results as validations for our model.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abels, H. & Feireisl, E. 2008 On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659698.CrossRefGoogle Scholar
Abels, H., Garcke, H. & Grun, G.2010 Thermodynamically consistent diffuse interface models for incompressible two-phase flows with different densities. arXiv:1011.0528.Google Scholar
Abels, H., Garcke, H. & Grün, G. 2012 Thermodynamically consistent, frame invariant, diffuse interface models for incompressible two-phase flows with different densities. Math. Models Meth. Appl. Sci. 22 (3), 1150013.CrossRefGoogle Scholar
Aki, G. L., Dreyer, W., Giesselmann, J. & Kraus, C. 2014 A quasi-incompressible diffuse interface model with phase transition. Math. Models Meth. Appl. Sci. 24 (5), 827861.CrossRefGoogle Scholar
Aland, S.2012 Modelling of two-phase flow with surface active particles. PhD thesis, TU Dresden.Google Scholar
Aland, S. & Voigt, A. 2012 Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Intl J. Numer. Meth. Fluids 69, 747761.CrossRefGoogle Scholar
Allaire, G., Clerc, S. & Kokh, S. 2002 A five-equation model for the simulation of interface between compressible fluids. J. Comput. Phys. 181, 577616.CrossRefGoogle Scholar
Andereck, C. D., Colovas, P. W., Degen, M. M. & Renardy, Y. Y. 1998 Instabilities in two layer Rayleigh–Bénard convection: overview and outlook. Intl J. Engng Sci. 36, 1451.CrossRefGoogle Scholar
Anderson, D. M. & McFadden, G. B. 1996 A diffuse-interface description of fluid systems. In NIST IR 5887, National Institute of Standards and Technology.Google Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 A phase-field model of solidification with convection. Physica D 135, 175194.CrossRefGoogle Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2001 A phase-field model with convection: sharp-interface asymptotics. Physica D 151, 305331.CrossRefGoogle Scholar
Andrea, D.2011 Equations for two-phase flows: a primer. arXiv:1101.5732v1 [physics.flu-dyn].Google Scholar
Antanovskii, L. K. 1995 A phase field model of capillarity. Phys. Fluids 7, 747753.CrossRefGoogle Scholar
Baldalassi, V., Ceniceros, H. & Banerjee, S. 2004 Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371397.CrossRefGoogle Scholar
Bao, K., Shi, Y., Sun, S. & Wang, X.-P. 2012 A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231, 80838099.CrossRefGoogle Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Bénard, H. 1900 Les tourbillons cellulaires dans une nappe liquide. Premiere partie: description. Rev. Gen. Sci. Pure Appl. 11, 12611271.Google Scholar
Berejnov, V., Lavrenteva, O. M. & Nir, A. 2001 Interaction of two deformable viscous drops under external temperature gradient. J. Colloid Interface Sci. 242, 202213.CrossRefGoogle Scholar
Blesgen, T. 1999 A generalization of the Navier–Stokes equations to two-phase flows. J. Phys. D: Appl. Phys. 32 (10), 1119.CrossRefGoogle Scholar
Block, M. J. 1956 Surface tension as the cause of Benard cells and surface deformation in a liquid film. Nature 178, 650651.CrossRefGoogle Scholar
Blyth, M. G. & Pozrikidis, C. 2004 Effect of inertia on the Marangoni instability of two-layer channel flow, part II: normal-mode analysis. J. Engng Maths 50, 329341.CrossRefGoogle Scholar
Borcia, R. & Bestehorn, M. 2003 Phase-field for Marangoni convection in liquid–gas systems with a deformable interface. Phys. Rev. E 67, 066307.CrossRefGoogle ScholarPubMed
Borcia, R., Merkt, D. & Bestehorn, M. 2004 A phase-field description of surface-tension-driven instability. Intl J. Bifurcation Chaos 14 (12), 41054116.CrossRefGoogle Scholar
Boyer, F. 2002 A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 4168.CrossRefGoogle Scholar
Cahn, J. W. & Allen, S. M. 1978 A microscopic theory for domain wall motion and its experimental verication in Fe–Al alloy domain growth kinetics. J. Phys. Colloq. C 38, 751.Google Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system I: interfacial free energy. J. Chem. Phys. 28, 258267.CrossRefGoogle Scholar
Chella, R. & Vinals, J. 1996 Mixing of a two-phase fluid by cavity flow. Phys. Rev. E 53, 38323840.CrossRefGoogle ScholarPubMed
Darhuber, A. A. & Troian, S. M. 2005 Principles of microfluidic actuation by modulation of surface stresses. Annu. Rev. Fluid Mech. 37, 425455.CrossRefGoogle Scholar
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403435.CrossRefGoogle Scholar
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.CrossRefGoogle Scholar
Eck, C., Fontelos, M., Grun, G., Klingbeil, F. & Vantzos, O. 2009 On a phase-field model for electrowetting. Interfaces Free Bound. 11 (2), 259290.CrossRefGoogle Scholar
Emmerich, H. 2008 Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57 (1), 187.CrossRefGoogle Scholar
Everett, D. H. 1972 Definitions, terminology and symbols in colloid and surface chemistry. Pure Appl. Chem. 31, 577.CrossRefGoogle Scholar
Gambaryan-Roisman, T., Alexeev, A. & Stephan, P. 2005 Effect of the microscale wall topography on the thermocapillary convection within a heated liquid film. Exp. Therm. Fluid Sci. 29, 765772.CrossRefGoogle Scholar
Gao, M. & Wang, X.-P. 2012 A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 13721386.CrossRefGoogle Scholar
Garcke, H., Hinze, M. & Kahle, C.2014 A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. arXiv:1402.6524.Google Scholar
Gibbs, J. W. 1875 On the equilibrium of heterogeneous substances. Trans. Connect. Acad. 3, 109.Google Scholar
Gibbs, J. W. 1928 The Collected Works of J. W. Gibbs. Longmans and Green.Google Scholar
Giesselmann, J. & Pryer, T.2013 Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. http://archiv.org/abs/1307.8248.Google Scholar
Ginzburg, V. L. & Landau, L. D. 1950 Theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 10641082.Google Scholar
Groot, S. R., De & Mazur, P. 1985 Non-Equilibrium Thermodynamics. Dover Books on Physics.Google Scholar
Grun, G. 2013 On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51 (6), 30363061.CrossRefGoogle Scholar
Grun, G. & Klingbeil, F. 2014 Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse interface model. J. Comput. Phys. 257, 708725.CrossRefGoogle Scholar
Guo, Z. & Lin, P.2014 A thermodynamic consistency preserving numerical method for a phase-field model with thermocapillary effects (in preparation).Google Scholar
Guo, Z., Lin, P. & Lowengrub, J. 2014 A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486507.CrossRefGoogle Scholar
Guo, Z., Lin, P. & Wang, Y. 2014b Continuous finite element schemes for a phase field model in two-layer fluid Bénard–Marangoni convection computations. Comput. Phys. Commun. 185, 6378.CrossRefGoogle Scholar
Gurtin, M. E., Poligone, D. & Vinale, J. 1996 Two-phase fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6, 815831.CrossRefGoogle Scholar
Haj-Hariri, H., Shi, Q. & Borhan, A. 1997 Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9, 845855.CrossRefGoogle Scholar
He, Q., Glowinski, R. & Ping, X. 2011 A least-squares/finite element method for the numerical solution of the Navier–Stokes-Cahn–Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230, 49915009.CrossRefGoogle Scholar
Herrmann, M., Lopez, J. M., Brady, P. & Raessi, M. 2008 Thermocapillary motion of deformable drops and bubbles. In Proceedings of the 2008 Summer Program (ed. Moin, P., Mansour, N. N. & You, D.), pp. 155170. Center for Turbulence Research, Stanford University.Google Scholar
Hohenberg, P. C. & Halperin, B. I. 1977 Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435479.CrossRefGoogle Scholar
Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 2001 Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302362.CrossRefGoogle Scholar
Hua, J., Lin, P., Liu, C. & Wang, Q. 2011 Energy law preserving $C^{0}$ finite element schemes for phase field models in two-phase flow computations. J. Comput. Phys. 230, 71157131.CrossRefGoogle Scholar
Hua, J. S., Stene, J. F. & Lin, P. 2008 Numerical simulation of 3d bubbles rising in viscous liquids using a front tracking method. J. Comput. Phys. 227 (6), 33583382.CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96127.CrossRefGoogle Scholar
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
Jasnow, D. & Vinals, J. 1996 Coarse-grained description of thermo-capillary flow. Phys. Fluids 8, 660669.CrossRefGoogle Scholar
Jiang, Y. & Lin, P.2014 Numerical simulation for moving contact line with continuous finite element schemes (in press).Google Scholar
Kim, J. 2005 A continuous surface tension force formulation for diffuse-interface models. J. Comput. Phys. 204, 784804.CrossRefGoogle Scholar
Kim, J. 2012 Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12 (3), 613661.CrossRefGoogle Scholar
Kim, J., Kang, K. & Lowengrub, J. 2004 Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511543.CrossRefGoogle Scholar
Kim, J. & Lowengrub, J. 2005 Phase field modelling and simulation of three-phase flows. Interface Free Bound. 7, 435466.CrossRefGoogle Scholar
Lee, H. G., Lowengrub, J. & Goodman, J. 2002a Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration. Phys. Fluids 14 (2), 492513.CrossRefGoogle Scholar
Lee, H. G., Lowengrub, J. & Goodman, J. 2002b Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Phys. Fluids 14 (2), 514545.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.Google Scholar
Lin, P. & Liu, C. 2006 Simulation of singularity dynamics in liquid crystal flows: a $C^{0}$ finite element approach. J. Comput. Phys. 215 (1), 348362.CrossRefGoogle Scholar
Lin, P., Liu, C. & Zhang, H. 2007 An energy law preserving $C^{0}$ finite element scheme for simulating the kinematic effects in liquid crystal flow dynamics. J. Comput. Phys. 227 (2), 14111427.CrossRefGoogle Scholar
Liu, C. & Shen, J. 2002 A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211228.CrossRefGoogle Scholar
Liu, H., Valocchi, A. J., Zhang, Y. & Kang, Q. 2014 Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel. J. Comput. Phys. 256, 334356.CrossRefGoogle Scholar
Lowengrub, J. & Truskinovsky, L. 1998 Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454, 26172654.CrossRefGoogle Scholar
Ma, C. & Bothe, D. 2013 Numerical modeling of thermocapillary two-phase flows with evaporation using a two-scalar approach for heat transfer. J. Comput. Phys. 233, 552573.CrossRefGoogle Scholar
Mase, G. E. & Mase, G. T. 1999 Continuum Mechanics for Engineers, 2nd edn. CRC Press.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239361.CrossRefGoogle Scholar
Moran, M. J., Shapiro, H. N., Boettner, D. D. & Bailey, M. 2010 Fundamentals of Engineering Thermodynamics, 7th edn. Wiley.Google Scholar
Nas, S., Muradoglu, M. & Tryggvason, G. 2006 Pattern formation of drops in thermocapillary migration. Intl J. Heat Mass Transfer 49, 22652276.CrossRefGoogle Scholar
Nas, S. & Tryggvason, G. 2003 Thermocapillary interaction of two bubbles or drops. Intl J. Multiphase Flow 29, 11171135.CrossRefGoogle Scholar
Osher, S. J. & Fedkiw, R. P. 2001 Level set methods: An overview and some recent results. J. Comput. Phys. 169, 463502.CrossRefGoogle Scholar
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489500.CrossRefGoogle Scholar
Pendse, B. & Esmaeeli, A. 2010 An analytical solution for thermocapillary-driven convection of superimposed fluids at zero Reynolds and Marangoni numbers. Intl J. Therm. Sci. 49, 11471155.CrossRefGoogle Scholar
Pozrikidis, C. 2004 Effect of inertia on the Marangoni instability of two-layer channel flow, Part I: numerical simulations. J. Engng Maths 50, 311327.CrossRefGoogle Scholar
Qian, T., Wang, X. & Sheng, P. 2006 Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1 (1), 152.Google Scholar
Rother, M. A., Zinchenko, A. Z. & Davis, R. H. 2002 A three-dimensional boundary-integral algorithm for thermocapillary motion of deformable drops. J. Colloid Interface Sci. 245, 356364.CrossRefGoogle ScholarPubMed
Rowlinson, J. S. & Widom, B. 1982 Molecular Theory of Capillarity. Dover.Google Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free surface and interfacial flows. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93127.CrossRefGoogle Scholar
Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface tension gradient: effects of mean surface tension and viscosity. J. Fluid Mech. 19, 321340.CrossRefGoogle Scholar
Sekerka, R. F.1993 Notes on entropy production in mutlicomponent fluids (unpublished).Google Scholar
Sethian, J. A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35, 341372.CrossRefGoogle Scholar
Shen, J. & Yang, X. 2009 An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228, 29782992.CrossRefGoogle Scholar
Shen, J. & Yang, X. 2010 A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 33, 11591179.CrossRefGoogle Scholar
van der Sman, R. G. M. & van der Graaf, S. 2006 Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46, 311.CrossRefGoogle Scholar
Sternling, C. V. & Scriven, L. E. 1959 Interfacial turbulence: hydrodynamic instability and the Marangoni effect. AIChE J. 5, 514523.CrossRefGoogle Scholar
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Sun, P., Liu, C. & Xu, J. 2009 Phase field model of thermo-induced Marangoni effects in the mixtures and its numerical simulations with mixed finite element method. Commun. Comput. Phys. 6, 10951117.CrossRefGoogle Scholar
Tavener, S. J. & Cliffe, K. A. 2002 Two-fluid Marangoni–Bénard convection with a deformable interface. J. Comput. Phys. 182, 277300.CrossRefGoogle Scholar
Teigen, K. E., Song, P., Lowengrub, J. & Voigt, A. 2011 A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375393.CrossRefGoogle ScholarPubMed
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 Front tracking method for the computation of multiphase flow. J. Comput. Phys. 169, 708759.CrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Verschueren, M., van de Vosse, F. N. & Meijer, H. E. H. 2001 Diffuse-interface modelling of thermo-capillary flow instabilities in a Hele-Shaw cell. J. Fluid Mech. 434, 153166.CrossRefGoogle Scholar
van der Waals, J. D. 1979 The thermodynamic theory of capilliary flow under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 197 (English translation).Google Scholar
Wang, S. L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J. & McFadden, G. B. 1993 Thermodynamically-consistent phase-field models for solidification. Physica D 69, 189200.CrossRefGoogle Scholar
Wang, X.-P. & Wang, Y.-G. 2007 The sharp interface limit of a phase field model for moving contact line problem. Meth. Appl. Anal. 14 (3), 285292.CrossRefGoogle Scholar
Weatherburn, C. E. 1939 Differential Geometry of Three Dimensions. Cambridge University Press.Google Scholar
Yin, Z., Gao, P., Hu, W. & Chang, L. 2008 Thermocapillary migration of nondeformable drops. Phys. Fluids 20, 082101.CrossRefGoogle Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350356.CrossRefGoogle Scholar
Yue, P. & Feng, J. J. 2012 Phase-field simulations of dynamic wetting of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 189, 813.CrossRefGoogle Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse interface method for simulating two phase flows of complex fluids. J. Fluid Mech. 515, 293317.CrossRefGoogle Scholar
Yue, P., Zhou, C. F., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006 Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219 (1), 4767.CrossRefGoogle Scholar
Zhao, J., Li, Z., Li, H. & Li, J. 2010 Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22, 295303.CrossRefGoogle Scholar
Zhou, H. & Davis, R. H. 1996 Axisymmetric thermocapillary migration of two deformable viscous drops. J. Colloid Interface Sci. 181, 6072.CrossRefGoogle Scholar