Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T22:24:06.573Z Has data issue: false hasContentIssue false

Thermoconvective instabilities in a horizontal porous layer

Published online by Cambridge University Press:  29 March 2006

J. P. Caltagirone
Affiliation:
Laboratoire d'Aérothermique du C.N.R.S., 4ter, Route des Gardes, 92190 Meudon, France

Abstract

Experimental investigations of natural convection in a porous layer placed between two horizontal and isothermal plane surfaces have revealed a new type of convection as the Rayleigh number Ra* increases: fluctuating convection. A numerical study carried out on a two-dimensional model in order to simulate this phenomenon shows that, apart from the influence of the Rayleigh number, the aspect ratio A (length/height) of a vortical cell is the most important parameter for the occurrence of this type of convection. These quasi-periodic fluctuations induce important variations in the temperature field and in the streamlines. The total heat transport, as defined by the Nusselt number Nu*, varies within limits which may be separated by 80% of the mean value. Using the Galerkin method it is possible to deduce the conditions for the onset of convection from a state of pure conduction and also to define the critical conditions for the development of fluctuating convection from another perturbed state. A physical interpretation of the results is given for each type of convection. The results seem to agree with the experimental and numerical results obtained by different authors.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, J. L. 1972 Phys. Fluids, 15, 1377.
Bories, S. 1970 Rev. Gen. Therm. 9, 1377.
Busse, F. H. 1968 J. Fluid Mech. 37, 457.
Busse, F. H. & Joseph, D. D. 1972 J. Fluid Mech. 54, 521.
Caltagirone, J. P. 1971 Mëm. C.N.A.M., Paris.
Caltagirone, J. P. 1974 Comptes Rendus, 278, 259.
Caltagirone, J. P., Cloupeau, M. & Combarnous, M. 1971 Comptes Rendus, 273, 833.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press.
Cloupeau, M. & Klarsfeld, S. 1970 Rep. Laboratoire d'Aérothermique.
Combarnous, M. 1970 Rev. Gen. Therm. 9, 1355.
Combarnous, M. & Bories, S. 1973 Int. J. Heat Mass Transfer, 17, 505.
Combarnous, M. & Le fur, B. 1969 Comptes Rendus, 269, 1009.
Finlayson, B. A. 1972 The Method of Weighted Residuals and Variational Principles. Academic.
Gupta, V. P. & Joseph, D. D. 1973 J. Fluid Mech. 57, 491.
Horne, R. N. & O'SULLIVAN, M. J.1974 J. Fluid Mech. 66, 339.
Hobton, C. W. & Rogers, F. T. 1945 J. Appl. Phys. 16, 367.
Howard, L. N. 1963 J. Fluid Mech. 17, 405.
Kantorovich, L. V. & Krylov, V. I. 1958 Approximate Methods in Higher Analysis. Groningen, The Netherlands: Noordhoff.
Katto, Y. & Masuoka, T. 1967 Int. J. Heat Mass Transfer, 10, 297.
Klarsfeld, S. 1970 Rev. Gen. Therm. 9, 1403.
Lapwood, E. R. 1948 Proc. Camb. Phil. Soc. 44, 508.
Moore, D. R. & Weiss, N. O. 1973 J. Fluid Mech. 58, 289.
Schneider, M. J. 1963 11th Int. Cong. Refrigeration (Munich), paper 11–4.
Straus, J. M. 1974 J. Fluid Mech. 64, 51.