Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T01:15:22.541Z Has data issue: false hasContentIssue false

Thermocapillary convection in long horizontal layers of low-Prandtl-number melts subject to a horizontal temperature gradient

Published online by Cambridge University Press:  26 April 2006

Hamda Ben Hadid
Affiliation:
Institut de Mécanique des Fluides, UM 34 du CNRS, 1 Rue Honnorat, F-13003 Marseille, France
Bernard Roux
Affiliation:
Institut de Mécanique des Fluides, UM 34 du CNRS, 1 Rue Honnorat, F-13003 Marseille, France

Abstract

Thermocapillary convection arising in small-depth layers (long horizontal cavities) subject to a horizontal temperature gradient is studied numerically. A broad range of values of the Reynolds-Marangoni number, Re, is considered for three values of the aspect ratio (A = length/height). For the largest aspect ratio considered, A = 25, the fully developed Poiseuille-Couette solution is reached, but only for moderate Re. The limiting Re value for the observability of such a fully developed solution is derived as a function of A(Re [les ] 20A). For Re [les ] 20A, the flow exhibits three distinct regimes, in the upwind, central and downwind regions, respectively. The Poiseuille-Couette solution (when it exists) fills the central region, and the flow is accelerated, in the upwind region, to reach this Poiseuille-Couette solution at a distance that is proportional to Re. In the downwind region, where the flow is deflected by the endwall, a multi-roll structure is exhibited for Re [ges ] 1330. The number of rolls increases with Re. When Re > 20A, the upwind and downwind regions coalesce and some of the downwind rolls can be suppressed. Most of the computations concern interfacial conditions (with fixed temperature distribution) for which the dynamical solution is decoupled from the thermal one. A few thermal solutions are given herein, for Pr = 0.015 only.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avduyevsky, V. S., Grishin, S. D., Leskov, L. V., Polezhaev, V. I. & Savitchev, V. V., 1984 Scientific foundations of Space manufacturing. Advances in Science and Technology in USSR. Mir.
Balasubramanian, R. & Ostrach, S., 1984 Fluid motion in the czochralski method of crystal growth. PhysicoChem. Hydrodyn. 5, 318.Google Scholar
Benguria, R. D. & Depassier, M. C., 1989 On the linear stability theory of Bénard-Marangoni convection. Phys. Fluids A 1, 11231127.Google Scholar
Ben Hadid, H. 1989 Etude numérique des mouvements convectifs au sein des fluides de faible nombre de Prandtl. Application à la fabrication des matériaux. Doctorate thesis, Université d'Aix-Marseille II.
Ben Hadid, H., Roux, B., Laure, P., Tison, P., Camel, D. & Favier, J. J., 1988 Surface-tension-driven flow in horizontal liquid metal layers. Adv. Space Res. 8, 293304.Google Scholar
Ben Hadid, H., Roux, B., Randriamampianina, A., Crespo, E. & Bontoux, P., 1987 Onset of oscillatory convection in horizontal layers of low-Prandtl-number melts. In Interfacial Phenomena (ed. M. G. Velarde), pp. 9971028, Plenum.
Bergman, T. L. & Keller, J. R., 1988 Combined buoyancy-surface tension flow in liquid metals. Numer. Heat Transfer 13, 4963.Google Scholar
Bergman, T. L. & Ramadhyani, S., 1986 Combined buoyancy- and thermocapillary-driven convection in open square cavities. Numer. Heat Transfer 9, 441451.Google Scholar
Birikh, R. V.: 1966 Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 7, 43.Google Scholar
Bye, J. A. T.: 1966 Numerical solution of the steady-state vorticity equation in rectangular basins. J. Fluid Mech. 26, 577598.Google Scholar
Camel, D., Tison, P. & Favier, J. J., 1986 Marangoni flow regimes in liquid metals. Acta Astron. 13, 723726.Google Scholar
Carruthers, J. R.: 1977 Thermal convection instabilities relevant to crystal growth from liquids. In Preparation and Properties of Solid State Materials, vol. 3 (ed. W. R. Wilcox & R. A. Lefever), New York: M. Dekker.
Castillo, J. L. & Velarde, M. G., 1982 Buoyancy-thermocapillary instability: the role of interfacial deformation in one- and two-component fluid layers heated from below or above. J. Fluid Mech. 125, 463474.Google Scholar
Cerisier, P., Pantaloni, J., Finiels, G. & Amalric, R., 1982 Thermovision applied to Bénard-Marangoni convection. Appl. Opt. 21, 21532159.Google Scholar
Chun, Ch.-H. 1980 Marangoni convection in a floating zone under reduced gravity. J. Cryst. Growth 48, 600.Google Scholar
Cowley, S. J. & Davis, S. H., 1983 Viscous thermocapillary convection at high Marangoni number. J. Fluid Mech. 135, 175188.Google Scholar
Cuvelier, C.: 1986 On the computation of fluid boundaries. In Notes on Numerical Fluid Mechanics, vol. 17 (ed. P. Wesseling), pp. 1829. Vieweg.
Cuvelier, C. & Driessen, J. M., 1986 Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169, 126.Google Scholar
Davis, S. H.: 1987 Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403435.Google Scholar
Fairweather, G. & Mitchell, A. R., 1967 A new computational procedure for A. O. I methods. SIAM J. Numer. Anal. 4, 2.Google Scholar
Fu, B.-I. & Ostrach, S. 1983 Numerical solutions of thermocapillary flows in floating zones. In Transport Phenomena in Materials Processing. Natural Convection-HTD-vol. 16, pp. 91104. ASME.
Kazarinoff, N. D. & Wilkowski, J. S., 1989 A numerical study of Marangoni flows in zone-refined silicon crystals. Phys. Fluids A 1, 625627.Google Scholar
Kirdyashkin, A. G.: 1984 Thermogravitional and thermocapillary flows in a horizontal liquid layer under the conditions of a horizontal temperature gradient. Intl J. Heat Mass Transfer 27, 12051218.Google Scholar
Langlois, W. E.: 1985 Buoyancy-driven flows in crystal-growth melts. Ann. Rev. Fluid Mech. 17, 191215.Google Scholar
Legros, J. C., Petré, G. & Limbourg-Fontaine, M. Cl. 1983 The influence on the Marangoni effect of a surface tension minimum as a function of temperature in microgravity conditions. In Proc. 4th European Symp. Materials Sciences under Microgravity, ESA-SP-191, pp. 201203.
Levich, V. G. & Krylov, V. S., 1969 Surface-tension-driven phenomena. Ann. Rev. Fluid Mech. 1, 293316.Google Scholar
Metzger, J. & Schwabe, D., 1988 Coupled buoyant and thermocapillary convection. PhysicoChem. Hydrodyn. 10, 263282.Google Scholar
Napolitano, L. G.: 1982 Surface and buoyancy driven free convection. Acta Astron. 9, 199215.Google Scholar
Napolitano, L. G., Golia, C. & Viviani, A., 1984 Numerical simulation of unsteady thermal Marangoni flows. Proc. 5th European Symp. Materials Sciences in Micrograivty conditions, ESA-SP-222, pp. 251258.Google Scholar
Napolitano, L. G. & Monti, R., 1987 Surface driven flows: recent theoretical and experimental results. Proc. 6th European Symp. Materials Sciences in Microgravity conditions, ESA-SP-256, pp. 551555.Google Scholar
Neary, M. D. & Stephanoff, K. D., 1987 Shear-layer-driven transition in a rectangular cavity. Phys. Fluids 30, 29362946.Google Scholar
Nield, D. A.: 1964 Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19, 341352.Google Scholar
Ochiai, J., Kuwahara, K., Morioka, M., Enya, S., Sezaki, K., Maekawa, T. & Tanasawa, I., 1984 Experimental study on Marangoni convection. Proc. 5th European Symp. Materials Sciences in Microgravity conditions, ESA-SP-222, pp. 291295.Google Scholar
Ostrach, S.: 1976 Convection Phenomena at reduced gravity of importance for materials processing. Proc. Second European Symp. Material Sciences in Space, ESA-SP-114, pp. 4156.Google Scholar
Ostrach, S.: 1982 Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 313345.Google Scholar
Pearson, J. R. A.: 1958 On convection cells induced by surface tension. J. Fluid Mech. 4, 489500.Google Scholar
Pimputkar, S. M. & Ostrach, S., 1981 Convective effects in crystals grown from melts. J. Cryst. Growth 55, 614646.Google Scholar
Platten, J. K. & Legros, J. C., 1986 Convection in Liquids, pp. 407412. Springer.
Polezhaev, V. I.: 1984 Hydrodynamics, Heat and Mass Transfer During Crystal Growth. Springer.
Polezhaev, V. I., Dubovik, K. G., Nikitin, S. A., Prostomolotov, A. I. & Fedyushkin, A. I., 1981 Convection during crystal growth on Earth and in Space. J. Cryst. Growth 52, 465470.Google Scholar
Preisser, F., Schwabe, D. & Scharmann, A., 1983 Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126, 545567.Google Scholar
Rosenberger, F.: 1979 Fundamentals of Crystal Growth, pp. 387391. Springer.
Roux, B., Bontoux, P., Loc, T. P. & Daube, O., 1979 Optimisation of Hermitian methods for N. S. equations in vorticity and streamfunction formulation. Lecture Notes in Mathematics, vol. 771, pp. 450468. Springer.
Roux, B., Grondin, J. C., Bontoux, P. & Gilly, B., 1978 On a high-order accurate method for the numerical study of natural convection in a vertical square cavity. Numerical Heat Transfer 1, 331349.Google Scholar
Schlichting, H.: 1968 Boundary Layer Theory (6th edn), pp. 176178. McGraw-Hill.
Schwabe, D. & Scharmann, A., 1981 The magnitude of thermocapillary convection in larger melt volumes. Adv. Space Res. 1, 1316.Google Scholar
Schwabe, D. & Scharmann, A., 1988 Marangoni and Buoyant convection in an open cavity under reduced and normal gravity. XXVII COSPAR, G.1.3.1, Helsinki.Google Scholar
Scriven, L. E. & Sternling, C. V., 1964 On cellular convection driven by surface tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 9, 321340.Google Scholar
Sen, A. K. & Davis, S. H., 1982 Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163186.Google Scholar
Smith, K. A.: 1966 On convective instability induced by surface-tension gradient. J. Fluid Mech. 24, 401414.Google Scholar
Smith, M. K.: 1988 The nonlinear stability of dynamic thermocapillary liquid layer. J. Fluid Mech. 194, 391415.Google Scholar
Smith, M. K. & Davis, S. H., 1983 Instabilities of dynamic thermocapillary liquid layers. Part 1 Convective instabilities. J. Fluid Mech. 132, 119144.Google Scholar
Srinivasan, J. & Basu, B., 1986 A numerical study of thermocapillary flow in a rectangular cavity during laser melting. Intl J. Heat Mass Transfer 29, 563572.Google Scholar
Strani, M. & Piva, R., 1982 Surface tension driven flows in micro-gravity conditions. Intl J. Numer. Meth. Fluids 2, 367386.Google Scholar
Strani, M., Piva, R. & Graziani, G., 1983 Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation. J. Fluid Mech. 130, 347376.Google Scholar
De Vahl, Davis G. 1986 Heat Transfer, pp. 101109. Hemisphere.
Velarde, M. G., Garcia-Ybarra, P. L. & Castillo, J. L. 1987 Interfacial oscillations in Bénard-Marangoni layers. PhysicoChem. Hydrodyn. 9, 387392.Google Scholar
Villers, D. & Platten, J. K., 1987 Separation of Marangoni convection from gravitational convection in earth experiments. PhysicoChem. Hydrodyn. 9, 173183.Google Scholar
Villers, D. & Platten, J. K., 1989 Influence of thermocapillarity on the oscillatory convection in low-Pr fluids. In Notes in Numerical Fluid Mechanics, vol. 27, pp. 108116. Vieweg.
Wilke, H. & Löser, W. 1983 Numerical calculation of Marangoni convection in a rectangular open boat. Cryst. Res. Tech. 18, 825833.Google Scholar
Winters, K. H., Plesser, Th. & Cliffe, K. A., 1988 The onset of convection in a finite container due to surface tension and buoyancy. Physica D 29, 387401.Google Scholar
Xu, J. J. & Davis, S. H., 1984 Convective thermocapillary instability in liquid bridges. Phys. Fluids 27, 11021107.Google Scholar
Yih, C. S.: 1968 Fluid motion induced by surface-tension variation. Phys. Fluids 11, 477480.Google Scholar
Zebib, A., Homsy, G. N. & Meiburg, E., 1985 High Marangoni convection in a square cavity. Phys. Fluids 28, 34673476.Google Scholar