Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T22:51:34.302Z Has data issue: false hasContentIssue false

Thermal transpiration in a circular capillary with a small temperature difference

Published online by Cambridge University Press:  19 April 2006

B. T. Porodnov
Affiliation:
Urals Polytechnical Institute, 620002 Sverdlovsk K-2, USSR
A. N. Kulev
Affiliation:
Urals Polytechnical Institute, 620002 Sverdlovsk K-2, USSR
F. T. Tuchvetov
Affiliation:
Urals Polytechnical Institute, 620002 Sverdlovsk K-2, USSR

Abstract

The results of an experimental investigation of the thermal transpiration effect (the thermomolecular pressure difference or t.p.d. effect) in a single glass capillary with a length-to-radius ratio of 250 are presented. The temperatures of the gas in the ‘cold’ and ‘hot’ chambers were 273·2°K and 293°K, respectively. A modified relative method has been used. To measure the t.p.d. effect, a capacitance differential digital micromanometer with sensitivity 4·5 × 10−5N/(m2Hz) was used. The gases investigated were He, Ne, Ar, Xe, H2, D2, N2, CO2, CH4 and SF6. It was discovered that in the intermediate flow regime the thermal-creep flow rate does not depend on the (non-isothermal) tangential momentum accommodation coefficient. From the experimental data on the viscous slip flow regime, the Eucken factors and the accommodation coefficients are calculated. For inert gases the Eucken factor is found to be equal to 2·5 within the experimental error, while the accommodation coefficients differ significantly from unity.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annis, B. K. 1972 J. Chem. Phys. 57, 2898.
Bennet, M. J. & Tompkins, F. C. 1957 Trans. Faraday Soc. 53, 185.
Borisov, S. F., Kulev, A. N., Porodnov, B. T. & Suetin, P. E. 1973a J. Tech. Phys. 43, 1973.
Borisov, S. F., Kulev, A. N., Porodnov, B. T., Suetin, P. E. & Barashkin, S. T. 1973b Inzhenerno Phys. Zh. 25, 456.
Borisov, S. F., Porodnov, B. T. & Suetin, P. E. 1970 J. Tech. Phys. 40, 50.
Chernjak, V. G., Margilevskii, A. E. PORODNOV, B. T. & SUETIN, P. E. 1975a Inzhenerno Phys. Zh. 28, 62.
Chernjak, V. G., Margilevskii, A. E., Porodnov, B. T. & Suetin, P. E. 1975b Physics of aerodispersional systems and physical kinetics. Proc. Calinin Univ., Calinin, p. 76.Google Scholar
Chernjak, V. G., Porodnov, B. T. & Suetin, P. E. 1973 Inzhenerno Phys. Zh. 24, 227.
Chernjak, V. G., Porodnov, B. T. & Suetin, P. E. 1974 Inzhenerno Phys. Zh. 26, 446.
Cogan, M. N. 1967 Dynamics of Rarefied Gas. Moscow: Nauka.
Deryagin, B. V. & Bakanov, S. P. 1962 Dokl. Acad. Sci. SSSR 144, 535.
Edmonds, T. & Hobson, J. P. 1965 J. Vac. Sci. Tech. 2, 182.
Ganzi, G. & Sandler, S. I. 1971 J. Chem. Phys. 55, 132.
Gorelov, S. L. & Cogan, M. N. 1970 Uchenie Zapiski ZAGI 1, N6.
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1961 Molecular Theory of Gases and Liquids, trans. from English. Moscow: Publ. House Foreign Literature.
Hobson, J. P. 1969 J. Vac. Sci. Tech. 6, 257.
Itterbeek, A. & Grande, E. 1947 Physica 13, 422.
Knudsen, M. 1910 Ann. Phys. 31, 205, 633; 33, 1435.
Liang, S. C. 1955 Can. J. Chem. 33, 279.
Loyalka, S. K. 1969 Phys. Fluids 12, 2301.
Loyalka, S. K. 1971 J. Chem. Phys. 55, 4497.
Loyalka, S. K. 1975 J. Chem. Phys. 63, 4034.
Loyalka, S. K. & Cipolla, J. W. 1971 Phys. Fluids 14, 1956.
Mcconville, G. T., Taylor, W. L. & Watkins, R. A. 1970 J. Chem. Phys. 53, 912.
Maxwell, J. C. 1953 Collected Papers, vol. 2, p. 704. Dover.
Podgurski, H. H. & Davis, F. N. 1961 J. Phys. Chem. 65, 1343.
Porodnov, B. T., Suetin, P. E., Borisov, S. F. & Akinshin, V. D. 1974 J. Fluid Mech. 64, 417.
Reynolds, O. 1879 Phil. Trans. Roy. Soc. 170, 727.
Sone, Y. & Yamamoto, K. 1968 Phys. Fluids 11, 1672.
Suetin, P. E. 1966 Izv. Vusov 5, 173.
Suetin, P. E., Porodnov, B. T., Chernjak, V. G. & Borisov, S. F. 1973 J. Fluid Mech. 63, 581.