Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T01:23:29.014Z Has data issue: false hasContentIssue false

Thermal atomisation of a liquid drop after impact onto a hot substrate

Published online by Cambridge University Press:  06 March 2018

I. V. Roisman*
Affiliation:
Technische Universität Darmstadt, Institute for Fluid Mechanics and Aerodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
J. Breitenbach
Affiliation:
Technische Universität Darmstadt, Institute for Fluid Mechanics and Aerodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
C. Tropea
Affiliation:
Technische Universität Darmstadt, Institute for Fluid Mechanics and Aerodynamics, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
*
Email address for correspondence: [email protected]

Abstract

This experimental study is focused on the mechanisms of thermal atomisation of a drop impacting onto a hot substrate. This phenomenon is characterised by the wetting and dewetting of the substrate, caused not by the rim dynamics, but induced by thermal effects. These thermal effects lead to the lamella evaporation, levitation and disintegration, generation of a vertical spray of fine droplets and consequently, drop breakup. A typical contact time of the drop before complete detachment is theoretically estimated. This estimation agrees very well with the experiments. It is shown that the Weber number, often used for describing splashing drops, is not a relevant parameter for thermal atomisation. Finally, a regime map is plotted, using a combination of the dimensionless contact time and the dimensionless heat flux at the substrate.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktershev, S. P. & Ovchinnikov, V. V. 2011 Modeling of the vaporization front on a heater surface. J. Engng Thermophys. 20 (1), 7788.Google Scholar
Bernardin, J., Stebbins, C. J. & Mudawar, I. 1996 Effects of surface roughness on water droplet impact history and heat transfer regimes. Intl J. Heat Mass Transfer 40 (1), 7388.Google Scholar
Bernardin, J. D. & Mudawar, I. 1999 The Leidenfrost point: experimental study and assessment of existing models. Trans. ASME J. Heat Transfer 121 (4), 894903.Google Scholar
Bernardin, J. D., Stebbins, C. J. & Mudawar, I. 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.Google Scholar
Bertola, V. 2004 Drop impact on a hot surface: effect of a polymer additive. Exp. Fluids 37 (5), 653664.Google Scholar
Bertola, V. 2009 An experimental study of bouncing Leidenfrost drops: comparison between Newtonian and viscoelastic liquids. Intl J. Heat Mass Transfer 52 (7), 17861793.CrossRefGoogle Scholar
Bertola, V. 2015 An impact regime map for water drops impacting on heated surfaces. Intl J. Heat Mass Transfer 85, 430437.Google Scholar
Bolle, L. & Moureau, J. C. 1982 Spray cooling of hot surfaces. Multiphase Sci. Technol. 1 (1–4), 197.Google Scholar
Breitenbach, J., Roisman, I. V. & Tropea, C. 2017a Drop collision with a hot, dry solid substrate: heat transfer during nucleate boiling. Phys. Rev. Fluids 2, 074301.CrossRefGoogle Scholar
Breitenbach, J., Roisman, I. V. & Tropea, C. 2017b Heat transfer in the film boiling regime: single drop impact and spray cooling. Intl J. Heat Mass Transfer 110, 3442.Google Scholar
Carey, V. P. 1992 Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. (Series in Chemical and Mechanical Engineering, vol. 1) , Taylor & Francis.Google Scholar
Celata, G. P., Cumo, M., Mariani, A. & Zummo, G. 2006 Visualization of the impact of water drops on a hot surface: effect of drop velocity and surface inclination. Heat Mass Transfer 42 (10), 885890.CrossRefGoogle Scholar
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432 (1884), 1341.Google Scholar
Chaze, W., Castanet, G., Cabalina, O., Maillet, D., Pierson, J.-F. & Lemoine, F. 2017 Instantaneous heat transfers at the impact of a droplet onto a hot surfaces in the boiling regime. In 28th Conference ILASS-Europe 2017, pp. 282289. ILASS Europe.Google Scholar
Chen, R.-H., Chow, L. C. & Navedo, J. E. 2002 Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Intl J. Heat Mass Transfer 45 (19), 40334043.Google Scholar
Cossali, G. E., Marengo, M. & Santini, M. 2005 Secondary atomisation produced by single drop vertical impacts onto heated surfaces. Exp. Therm. Fluid Sci. 29 (8), 937946.Google Scholar
Ebadian, M. A. & Lin, C. X. 2011 A review of high-heat-flux heat removal technologies. Trans. ASME J. Heat Transfer 133 (11), 110801.CrossRefGoogle Scholar
Hammad, J., Mitsutake, Y. & Monde, M. 2004 Movement of maximum heat flux and wetting front during quenching of hot cylindrical block. Intl J. Therm. Sci. 43 (8), 743752.Google Scholar
Karwa, N., Gambaryan-Roisman, T., Stephan, P. & Tropea, C. 2011 Experimental investigation of circular free-surface jet impingement quenching: transient hydrodynamics and heat transfer. Exp. Therm. Fluid Sci. 35 (7), 14351443.Google Scholar
Khavari, M., Sun, C., Lohse, D. & Tran, T. 2015 Fingering patterns during droplet impact on heated surfaces. Soft Matt. 11, 32983303.Google Scholar
Kim, J. 2007 Spray cooling heat transfer: the state of the art. Intl J. Heat Fluid Flow 28 (4), 753767.Google Scholar
Leidenfrost, J. G. 1966 On the fixation of water in diverse fire. Intl J. Heat Mass Transfer 9 (11), 11531166.CrossRefGoogle Scholar
Liang, G. & Mudawar, I. 2017 Review of drop impact on heated walls. Intl J. Heat Mass Transfer 106, 103126.Google Scholar
van Limbeek, M. A. J., Shirota, M., Sleutel, P., Sun, C., Prosperetti, A. & Lohse, D. 2016 Vapour cooling of poorly conducting hot substrates increases the dynamic leidenfrost temperature. Intl J. Heat Mass Transfer 97, 101109.Google Scholar
Lv, C., Hao, P., Zhang, X. & He, F. 2016 Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness. Appl. Phys. Lett. 108 (14), 141602.CrossRefGoogle Scholar
Marengo, M., Antonini, C., Roisman, I. V. & Tropea, C. 2011 Drop collisions with simple and complex surfaces. Curr. Opin. Colloid Interface Sci. 16 (4), 292302.Google Scholar
Mehdizadeh, N. Z. & Chandra, S. 2006 Boiling during high-velocity impact of water droplets on a hot stainless steel surface. Proc. R. Soc. Lond. A 462 (2074), 31153131.Google Scholar
Moreira, A. L. N., Moita, A. S., Cossali, E., Marengo, M. & Santini, M. 2007 Secondary atomization of water and isooctane drops impinging on tilted heated surfaces. Exp. Fluids 43 (2), 297313.Google Scholar
Naber, J. D. & Reitz, R. D.1988 Modeling engine spray/wall impingement. Tech. Rep. 880107. SAE Technical Paper.Google Scholar
Piggott, B. D. G., White, E. P. & Duffey, R. B. 1976 Wetting delay due to film and transition boiling on hot surfaces. Nucl. Engng Des. 36 (2), 169181.Google Scholar
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.Google Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atom. Sprays 11 (2), 155165.Google Scholar
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.Google Scholar
Roisman, I. V. 2010 Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. J. Fluid Mech. 656, 189204.Google Scholar
Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21 (5), 052103.Google Scholar
Shirota, M., van Limbeek, M. A. J., Sun, C., Prosperetti, A. & Lohse, D. 2016 Dynamic Leidenfrost effect: Relevant time and length scales. Phys. Rev. Lett. 116, 064501.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1959 The dynamics of thin sheets of fluid II. Waves on fluid sheets. Proc. R. Soc. Lond. A 253, 296312.Google Scholar
Testa, P. & Nicotra, L. 1986 Influence of pressure on the Leidenfrost temperature and on extracted heat fluxes in the transient mode and low pressure. Trans. ASME J. Heat Transfer 108 (4), 916921.Google Scholar
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.Google Scholar
Tran, T., Staat, H. J. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J. G. E., Prosperetti, A., Lohse, D. & Sun, C. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9, 32723282.Google Scholar
Tsai, P., Pacheco, S., Pirat, C., Lefferts, L. & Lohse, D. 2009 Drop impact upon micro- and nanostructured superhydrophobic surfaces. Langmuir 25 (20), 1229312298.Google Scholar
Wachters, L. H. J. & Westerling, N. A. J. 1966 The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng Sci. 21 (11), 10471056.CrossRefGoogle Scholar
Willis, K. D. & Orme, M. E. 2000 Experiments on the dynamics of droplet collisions in a vacuum. Exp. Fluids 29 (4), 347358.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yarin, A. L., Roisman, I. V. & Tropea, C. 2017 Collision Phenomena in Liquids and Solids. Cambridge Uniersity Press.Google Scholar
Zhong, L. & Guo, Z. 2017 Effect of surface topography and wettability on the Leidenfrost effect. Nanoscale 9 (19), 62196236.Google Scholar