Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:41:37.791Z Has data issue: false hasContentIssue false

Theoretical study of the transonic flow past wedge profiles with detached shock waves

Published online by Cambridge University Press:  20 April 2006

Michel Abboud
Affiliation:
Institut für Strömungslehre und Strömungsmaschinen, Universität (TH) Karlsruhe

Abstract

This report presents a numerical study of the two-dimensional, steady and inviscid flow of a perfect gas past wedge profiles with detached shock waves for free-stream Mach numbers between 1.05 and 1.44.

Utilizing the hodograph transformation, a boundary-value problem for the mixed flow is formulated in the hodograph plane and subsequently solved by a finite-difference scheme, iterating respectively between the elliptic and hyperbolic regions. The use of boundary-fitted coordinates and a graded lattice failed to achieve satisfactory results, owing to either convergence difficulties or numerical inaccuracies introduced through the coordinate generator. On the other hand, Cartesian coordinates presented no convergence problems and yielded accurate results.

After transforming the solution back to the physical plane, the flow field between the shock wave and the limiting Mach wave is determined. A comparison of the results with experiments and other theories shows a good agreement both for the pressure distribution on the wedge and for the shock stand-off distance.

Also of special interest is a quantitative comparison of the results with the small-disturbance theory (solution of the Tricomi equation) and the limiting case of the free-stream Mach number 1.

Moreover, an example of the flow past round-nosed wedges, with and without an angle of attack, is treated using the inverse method.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud, M. 1982 Die schallnahe Überschallumströmung von Keilen. Doctoral dissertation, Universität Karlsruhe.
Bryson, A. E. 1952 An experimental investigation of transonic flow past two-dimensional wedge and circular-arc sections using a Mach-Zehnder interferometer. NACA Rep. 1094.Google Scholar
Drebinger, J. W. 1950 Detached shock waves. Ph.D. thesis, Harvard University.
Ferrari, C. & Tricomi, F. G. 1968 Transonic Aerodynamics. Academic.
Frankl, F. 1947 On the problems of Chaplygin for mixed sub- and supersonic flows. NACA TM 1155.Google Scholar
Graefe, V. 1980 Berechnung des gemischten Unterschall-Überschall-Strömungsfeldes vor Keilen mit abgelöstem Verdichtungsstoß. Doctoral dissertation, Universität Clausthal.
Griffith, W. 1952 Shock-tube studies of transonic flow over wedge profiles. J. Aero. Sci. 19, 249257.Google Scholar
Guderley, K. G. 1947 Considerations on the structure of mixed subsonic-supersonic flow patterns. Wright-Field Tech. Rep. F-TR-2168-ND.Google Scholar
Guderley, K. G. & Yoshihara, H. 1950 The flow over a wedge profile at Mach number 1, J. Aero. Sci. 17, 723735.Google Scholar
Guderley, K. G. & Yoshihara, H. 1953 Two-dimensional unsymmetric flow patterns at Mach number 1. J. Aero. Sci. 20, 757768.Google Scholar
Middlecoff, J. F. & Thomas, P. D. 1979 Direct control of the grid point distribution in meshes generated by elliptic equations. In A Collection of Technical Papers, pp. 175179. AIAA.
Müller, E. A. & Matschat, K. 1964 Ähnlichkeitslösungen der transsonischen Gleichung bei der Anströmmachzahl 1. In Proc. Intl Congr. Appl. Mech., pp. 10611068.
Sauer, R. 1960 Einführung in die theoretische Gasdynamik. Springer.
Tanner, M. 1978 Druckverteilungsmessungen an Keilen bei Unterschall- und Transschall-geschwindigkeiten. DVLR-FB 7822.Google Scholar
Thompson, J. F., Thames, F. C. & Mastin, C. W. 1977 Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies. NASA CR-2729.Google Scholar
van Raay, O. 1973 Eine numerische Lösung der transsonischen Umströmung stumpfer Keilflanken. Acta Mech. 16, 221240.Google Scholar
Vincenti, W. G. & Wagoner, C. B. 1952 Transonic flow past a wedge profile with detached bow wave. NACA Rep. 1095.Google Scholar
Vincenti, W. G. & Wagoner, C. B. 1954 Theoretical study of the transonic lift of a double-wedge profile with detached bow wave. NACA Rep. 1180.Google Scholar
Vincenti, W. G., Wagoner, C. B. & Fisher, N. H. 1956 Calculations of the flow over an inclined flat plate at free-stream Mach number 1.-NACA TN 3723.Google Scholar
Zierep, J. 1968 Der Kopfwellenabstand bei einem spitzen, schlanken Körper in schallnaher Überschallanströmung. Acta Mech. 5, 204208.Google Scholar