Published online by Cambridge University Press: 29 March 2006
The present work is an analytical study of the stability of interfaces between fluids in motion, special attention being given to the role of surface tension without consideration of viscous effects. A variational approach based upon the principle of minimum free energy, which was first formulated for stagnant fluids, is applied to fluids in motion. This generalization is possible if viscous and inertia effects are unimportant as far as stability is concerned. One stability problem is studied in detail: a gas jet impinging on a free liquid. The analytical results obtained by this variational technique lie within the range of accuracy (15%) of the experimental results for this gas-jet problem. The method is very general and therefore can be applied to quite a number of interface stability problems.