Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T06:22:36.134Z Has data issue: false hasContentIssue false

Test of the anomalous scaling of passive temperature fluctuations in turbulent Rayleigh–Bénard convection with spatial inhomogeneity

Published online by Cambridge University Press:  16 July 2014

Xiaozhou He
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Xiao-dong Shang
Affiliation:
State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Penger Tong*
Affiliation:
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
*
Email address for correspondence: [email protected]

Abstract

The scaling properties of the temperature structure function (SF) and temperature–velocity cross-structure function (CSF) are investigated in turbulent Rayleigh–Bénard convection (RBC). The measured SFs and CSFs exhibit good scaling in space and time and the resulting SF and CSF exponents are obtained both at the centre of the convection cell and near the sidewall. A universal relationship between the CSF exponent and the thermal dissipation exponent is found, confirming that the anomalous scaling of passive temperature fluctuations in turbulent RBC is indeed caused by the spatial intermittency of the thermal dissipation field. It is also found that the difference in the functional form of the measured SF and CSF exponents at the two different locations in the cell is caused by the change of the geometry of the most dissipative structures in the (inhomogeneous) temperature field from being sheetlike at the cell centre to filament-like near the sidewall. The experiment thus provides direct evidence showing that the universality features of turbulent cascade are linked to the degree of anisotropy and inhomogeneity of turbulent statistics.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Max Planck Institute for Dynamics and Self Organization, D-37073 Göttingen, Germany.

References

Antonia, R. A., Hopfinger, E. J., Gagne, Y. & Anselmet, F. 1984 Temperature structure functions in turbulent shear flows. Phys. Rev. A 30, 27042707.Google Scholar
Arnèodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D., Lanotte, A. S., Lévéque, E., Lüthi, B., Mann, J., Mordant, N., Müller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. & Yeung, P. K. 2008 Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504.Google Scholar
Ashkenazi, S. & Steinberg, V. 1999 Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys. Rev. Lett. 83, 47604763.Google Scholar
Belmonte, A. & Libchaber, A. 1996 Thermal signature of plumes in turbulent convection: the skewness of the derivative. Phys. Rev. E 53, 48934898.Google Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29R32.Google Scholar
Benzi, R., Toschi, F. & Tripiccione, R. 1998 On the heat transfer in Rayleigh–Bénard systems. J. Stat. Phys. 93, 901918.CrossRefGoogle Scholar
Benzi, R., Tripiccione, R., Massaioli, F., Succi, S. & Cilibertoi, S. 1994 On the scaling of the velocity and temperature structure functions in Rayleigh–Bénard convection. Europhys. Lett. 25, 341346.Google Scholar
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414, 43164.CrossRefGoogle Scholar
Boratav, O. N. & Pelz, R. B. 1998 Coupling between anomalous velocity and passive scalar increments in turbulence. Phys. Fluids 10, 21222124.Google Scholar
Calzavarini, E., Toschi, F. & Tripiccione, R. 2002 Evidences of Bolgiano–Obhukhov scaling in three-dimensional Rayleigh–Bénard convection. Phys. Rev. E 66, 016304.Google Scholar
Camussi, R. & Verzicco, R. 2004 Temporal statistics in high Rayleigh number convective turbulence. Eur. J. Mech. (B/Fluids) 23, 427442.Google Scholar
Cao, N. & Chen, S. 1997 An intermittency model for passive-scalar turbulence. Phys. Fluids 9, 12031205.Google Scholar
Cao, N., Chen, S. & Sreenivasan, K. R. 1996 Scalings of low-order structure functions in fluid turbulence. Phys. Rev. Lett. 77, 37993802.Google Scholar
Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Chen, S., Sreenivasan, K. R., Nelkin, M. & Cao, N.-Z. 1997 Refined similarity hypothesis for transverse structure functions in fluid turbulence. Phys. Rev. Lett. 79, 22532256.Google Scholar
Chertkov, M., Falkovich, G., Kolokolov, I. & Lebedev, V. 1995 Normal and anomalous scaling of 4He fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E 52, 49244941.Google Scholar
Chilla, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Ching, E. S. C., Leung, C. K., Qiu, X.-L. & Tong, P. 2003 Intermittency of velocity fluctuations in turbulent thermal convection. Phys. Rev. E 68, 026307.Google Scholar
Ching, E. S. C. 2007 Measured thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. E 75, 056302.Google Scholar
Ching, E. S. C. & Chau, K. L. 2001 Scaling laws in the central region of confined turbulent thermal convection. Phys. Rev. E 63, 047303.Google Scholar
Ching, E. S. C., Guo, H. & Lo, T. S. 2008 Refined similarity hypotheses in shell models of homogeneous turbulence and turbulent convection. Phys. Rev. E 78, 026303.Google ScholarPubMed
Ching, E. S. C. & Kwok, C. Y. 2000 Statistics of local temperature dissipation in high Rayleigh number convection. Phys. Rev. E 62, R7587R7590.Google Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1995 Temperature structure functions in turbulent convection at low Prandtl number. Europhys. Lett. 32, 413418.Google Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469473.Google Scholar
Du, Y.-B. & Tong, P. 2000 Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech. 407, 5784.Google Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.Google Scholar
Frisch, U. 1995 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.Google Scholar
Frisch, U., Mazzino, A. & Vergassola, M. 1998 Intermittency in passive scalar advection. Phys. Rev. Lett. 80, 55325535.Google Scholar
Gawȩdzki, K. & Kupiainen, A. 1995 Anomalous scaling of the passive scalar. Phys. Rev. Lett. 75, 3834.Google Scholar
Grossmann, S. & Lohse, D. 1992 Scaling in hard turbulent Rayleigh–Bénard flow. Phys. Rev. A 46, 903917.Google Scholar
Grossmann, S. & Lohse, D. 1993 Characteristic scales in Rayleigh–Bénard turbulence. Phys. Lett. A 173, 5862.Google Scholar
Grossmann, S., Lohse, D. & Reeh, A. 1997 Different intermittency for longitudinal and transversal turbulent fluctuations. Phys. Fluids 9, 38173825.Google Scholar
Gylfason, A. & Warhaft, Z. 2004 On higher order passive scalar structure functions in grid turbulence. Phys. Fluids 16, 40124019.Google Scholar
He, G.-W., Chen, S. & Doolen, G. 1998 Hierarchy of structure functions for passive scalars advected by turbulent flows. Phys. Lett. A 246, 135138.Google Scholar
He, G.-W. & Zhang, J.-B. 2006 Elliptic model for space–time correlations in turbulent shear flows. Phys. Rev. E 73, 055303(R).CrossRefGoogle ScholarPubMed
He, X., Ching, E. S. C. & Tong, P. 2011 Locally averaged thermal dissipation rate in turbulent thermal convection: a decomposition into contributions from different temperature gradient components. Phys. Fluids 23, 025106.CrossRefGoogle Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.Google Scholar
He, X., He, G. & Tong, P. 2010a Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis. Phys. Rev. E 81, 065303(R).Google Scholar
He, X. & Tong, P. 2009 Measurements of the thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. E 79, 026306.Google Scholar
He, X. & Tong, P. 2011 Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection. Phys. Rev. E 83, 037302.CrossRefGoogle ScholarPubMed
He, X., Tong, P. & Ching, E. S. C. 2010b Statistics of the locally averaged thermal dissipation rate in turbulent Rayleigh–Bénard convection. J. Turbul. 11, 110.CrossRefGoogle Scholar
He, X., Tong, P. & Xia, K.-Q. 2007 Measured thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 144501.Google Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.Google Scholar
Kadanoff, L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.Google Scholar
Kerr, R. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.Google Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Kraichnan, R. H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7, 17231734.Google Scholar
Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random stretching field. J. Fluid Mech. 64, 737762.Google Scholar
Kraichnan, R. H. 1994 Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 10161019.Google Scholar
Kunnen, R. P. J., Clercx, H. J. H., Geurts, B. J., van Bokhoven, L. J. A., Akkermans, R. A. D. & Verzicco, R. 2008 Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.Google Scholar
Lashermes, B., Abry, P. & Chainais, P. 2004 New insights into the estimation of scaling exponents. Intl J. Wavelets Multiresolut. Inf. Process. 2, 497530.CrossRefGoogle Scholar
Lepore, J. & Mydlarski, L. 2009 Effect of the scalar injection mechanism on passive scalar structure functions in a turbulent flow. Phys. Rev. Lett. 103, 034501.Google Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
Mashiko, T., Tsuji, Y., Mizuno, T. & Sano, M. 2004 Instantaneous measurement of velocity fields in developed thermal turbulence in mercury. Phys. Rev. E 69, 036306.Google Scholar
Meneveau, C., Sreenivasan, K. R., Kailasnath, P. & Fan, M. S. 1990 Joint multifractal measures: theory and applications to turbulence. Phys. Rev. A 41, 894913.Google Scholar
Obukhov, A. M. 1949 Structure of the temperature field in turbulent flow. Izv. Akad. Nauk SSSR Geogr. Geofiz 13, 5869.Google Scholar
Procaccia, I., Ching, E. S. C., Constantin, P., Kadanoff, L. P., Libchaber, A. & Wu, X.-Z. 1991 Transitions in convective turbulence: the role of thermal plumes. Phys. Rev. A 44, 80918102.Google Scholar
Procaccia, I. & Zeitak, R. 1989 Scaling exponents in nonisotropic convective turbulence. Phys. Rev. Lett. 62, 21282131.Google Scholar
Procaccia, I. & Zeitak, R. 1990 Scaling exponents in thermally driven turbulence. Phys. Rev. A 42, 821830.Google Scholar
Qiu, X.-L. & Tong, P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.Google Scholar
Qiu, X.-L. & Tong, P. 2002 Temperature oscilations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 66, 026308.Google Scholar
Ruiz-Chavarria, G., Baudet, C. & Ciliberto, S. 1996 Scaling laws and dissipation scale of a passive scalar in fully developed turbulence. Physica D 99, 369380.Google Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.Google Scholar
Shang, X.-D., Tong, P. & Xia, K.-Q. 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.Google Scholar
Shang, X.-D., Qiu, X. L., Tong, P. & Xia, K. Q. 2003 Measured local heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 90, 074501.Google Scholar
Shang, X.-D., Qiu, X.-L., Tong, P. & Xia, K.-Q. 2004 Measurements of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 70, 026308.Google Scholar
She, Z.-S. & Léveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336339.Google Scholar
She, Z.-S. & Orszag, S. A. 1991 Physical model of intermittency: inertial-range non-Gaussian statistics. Phys. Rev. Lett. 66, 17011704.CrossRefGoogle ScholarPubMed
Shraiman, B. & Siggia, E. 1995 Anomalous scaling of a passive scalar in turbulent fow. C. R. Acad. Sci. 321, 279284.Google Scholar
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405, 639646.CrossRefGoogle ScholarPubMed
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.Google Scholar
Skrbek, L., Niemela, J. J., Sreenivasan, K. R. & Donnelly, R. J. 2002 Temperature structure functions in the Bolgiano regime of thermal convection. Phys. Rev. E 66, 036303.Google Scholar
Sreenivasan, K. R. 1991a Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 233, 539600.Google Scholar
Sreenivasan, K. R. 1991b On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.Google Scholar
Sun, C., Xia, K.-Q. & Tong, P. 2005 Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302.Google Scholar
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.Google Scholar
Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76, 14651468.Google Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.Google Scholar
Tong, P. & Shen, Y. 1992 Relative velocity fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 69, 20662069.Google Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.Google Scholar
Wu, X.-Z., Kadanoff, L. P., Libchaber, A. & Sano, M. 1990 Frequency power spectrum of temperature fluctuations in free convection. Phys. Rev. Lett. 64, 2140.Google Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation. J. Fluid Mech. 503, 4756.Google Scholar
Xi, H.-D. & Xia, K.-Q. 2008 Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78, 036326.Google Scholar
Yaglom, A. M. 1949 On the local structure of the temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 69, 743746.Google Scholar
Zhao, X. & He, G. W. 2009 Space–time correlations of fluctuating velocities in turbulent shear flows. Phys. Rev. E 79, 046316.Google Scholar
Zhou, Q., Li, C.-M., Lu, Z.-M. & Liu, Y.-L. 2011 Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 683, 94111.Google Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2008 Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech. 598, 361372.Google Scholar
Zhou, S.-Q. & Xia, K.-Q. 2001 Scaling properties of the temperature field in convective turbulence. Phys. Rev. Lett. 87, 064501.Google Scholar