Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:16:13.729Z Has data issue: false hasContentIssue false

Temporal stability of Jeffery–Hamel flow

Published online by Cambridge University Press:  26 April 2006

Mahmoud Hamadiche
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36, avenue Guy-de-Collongue, BP 163, 69131 Ecully, France
Julian Scott
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36, avenue Guy-de-Collongue, BP 163, 69131 Ecully, France
Denis Jeandel
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36, avenue Guy-de-Collongue, BP 163, 69131 Ecully, France

Abstract

In this study of the temporal stability of Jeffery–Hamel flow, the critical Reynolds number based on the volume flux, Rc, and that based on the axial velocity, Rec, are computed. It is found that both critical Reynolds numbers decrease very rapidly when the half-angle of the channel, α, increases, such that the quantity αRc remains very nearly constant and αRecis a nearly linear function of α. For a short channel there can be more than one value of the critical Reynolds number. A fully nonlinear analysis, for Re close to the critical value, indicates that the loss of stability is supercritical. The resulting asymmetric oscillatory solutions show staggered arrays of vortices positioned along the channel.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banks, W. H. H., Drazin, P. G. & Zaturska, M. B. 1988 On perturbation of Jeffery–Hamel flow. J. Fluid Mech. 186, 559581.Google Scholar
Batchelor, G. K. 1977 An Introduction to Fluid Dynamics. Cambridge University Press.
Bramley, J. S. & Dennis, S. C. R. 1982 The calculation of eigenvalues for the stationary perturbation of Poiseuille flow. J. Comput. Phys. 47, 179198.Google Scholar
Carlson, J. J., Johnston, J. P. & Sagi, C. J. 1967 Effect of wall shape on flow regimes and performance in straight, two-dimensional diffuser. Trans. ASME J. Basic Engng 89, 151.Google Scholar
Dean, W. R. 1934 Note on the divergent flow of fluid. Phil. Mag. 18, 749777.Google Scholar
Eagles, P. M. 1966 The stability of a family of Jeffery–Hamel solutions for divergent channel flow. J. Fluid Mech. 24, 191207.Google Scholar
Fraenkel, L. E. 1962a Laminar flow in symmetrical channels with slightly curved walls, I. On the Jeffery–Hamel solution for flow between walls. Proc. R. Soc. Lond. A 267, 119138.Google Scholar
Fraenkel, L. E. 1962b Laminar flow in symmetrical channels with slightly curved walls, II. An asymptotic series for the stream function. Proc. R. Soc. Lond. A 272, 406428.Google Scholar
Grosch, C. E. & Salwen, H. 1968 The stability of steady and time-dependent plane poiseuille flow. J. Flow Mech. 34, 177205.Google Scholar
Hamadiche, M. 1985 Analyse spectrale des mécanismes linéaires des écoulement turbulents inhomogénes. Thesis of Doctorat D'Etat, Université Claude-Bernard Lyon-I.
Hamel, G. 1916 Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresbericht Deutsch. Math. Vereingung 25, 3460.Google Scholar
Hooper, A., Duffy, B. R. & Moffatt, H. K. 1982 Flow of fluid of non-uniform viscosity in converging and diverging channels. J. Fluid Mech. 117, 383304.Google Scholar
Jeffery, G. 1915 The two-dimensional steady motion of a viscous fluid. Phil. Mag. (6) 29, 455465.Google Scholar
Lin, C. C. 1945a On the stability of two-dimensional parallel flow, Part I. Q. J. Appl. Maths 3, 117142.Google Scholar
Lin, C. C. 1945b On the stability of two-dimensional parallel flow, Part II. Q. J. Appl. Maths 3, 218234.Google Scholar
Mele, P., Morganti, M., Dicarlo, A. & Tatone, A. 1981 Laminar to turbulent flow study by means of F.E.M. Proc. Second Intl Conf., Venice 13–16 July (ed. C. Taylor & B. A. Schrefler).
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.Google Scholar
Reneau, L. R., Johnston, J. P. & Klim, S. J. 1967 Performance and design of straight, twodimensional diffusers. Trans. ASME, J. Basic Engng 89, 141.Google Scholar
Rodrigues, J. L. A. D. F. 1990 Méthode de minimisation adaptée á la technique des élément finis pour la simulation des écoulements turbulents avec conditions aux limites non linéaires de proche paroi. Doctoral thesis: E.C.L. 90–016, Ecole Centrale de Lyon.
Sobey, I. J. & Drazin, P. G. 1986 Bifurcation of two-dimensional channel flow. J. Fluid Mech. 171, 263287.Google Scholar
Thomas, L. H. 1953 The stability of plane Poiseuille flow. Phys. Rev. 91, 780783.Google Scholar
White, F. M. 1974 Viscous Fluid Flow. McGraw-Hill.