Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-17T23:14:47.517Z Has data issue: false hasContentIssue false

Temperature dissipation in a turbulent round jet

Published online by Cambridge University Press:  26 April 2006

R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, NSW, 2308, Australia
J. Mi
Affiliation:
Department of Mechanical Engineering, University of Newcastle, NSW, 2308, Australia

Abstract

Parallel cold wires were used to measure the temperature derivative, in each of the three spatial directions, in the self-preserving region of a turbulent round jet. The temperature derivative variances were inferred from the correlation method and from the temperature derivative spectra after correcting these for the effect of wire separation. Both methods yielded fully consistent results for the components of the average temperature dissipation: the radial and azimuthal values are nearly equal and only slightly larger than the axial component. The resulting departure from isotropy of the temperature dissipation is small, especially when compared with results in other free shear flows. The high-wavenumber behaviour of the corrected temperature derivative spectra conforms closely with isotropy on the jet axis but small departures occur away from the axis. Conditional averages, based on spatially coherent temperature jumps, indicate that, while the organized motion makes a significant contribution to the temperature variance, its contribution to the temperature-derivative variances is small.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmet, F., Antonia, R. A., Benabid, T. & Fulachier, L. 1990 Effect of wall suction on the transport of a scalar by coherent structures in a turbulent boundary layer. In Structure of Turbulence and Drag Reduction (ed. A. Gyr), pp. 349356. Springer.
Antonia, R. A., Anselmet, F. & Chambers, A. J. 1986 Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365391.Google Scholar
Antonia, R. A. & Browne, L. W. B. 1983 The destruction of temperature fluctuations in a turbulent plane jet. J. Fluid Mech. 134, 6783.Google Scholar
Antonia, R. A. & Browne, L. W. B. 1986 Anisotropy of the temperature dissipation in a turbulent wake. J. Fluid Mech. 163, 393403.Google Scholar
Antonia, R. A., Browne, L. W. B. & Chambers, A. J. 1981 Determination of time constants of cold wires. Rev. Sci. Instrum. 52, 13821385.Google Scholar
Antonia, R. A., Browne, L. W. B. & Chambers, A. J. 1985 Relations between spectra of spatial derivatives of temperature in a turbulent jet. Phys. Fluids 28, 420423.Google Scholar
Antonia, R. A., Browne, L. W. B., Rajagopalan, S. & Chambers, A. J. 1983 On the organized motion of a turbulent plane jet. J. Fluid Mech. 134, 4966.Google Scholar
Antonia, R. A., Chambers, A. J., Britz, D. & Browne, L. W. B. 1986 Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport. J. Fluid Mech. 172, 211229.Google Scholar
Antonia, R. A., Chambers, A. J. & Hussain, A. K. M. F. 1980 Errors in simultaneous measurements of temperature and velocity in the outer part of a heated jet. Phys. Fluids 23, 871874.Google Scholar
Antonia R. A., & Fulachier, L. 1989 Topology of a turbulent boundary layer with and without wall suction. J. Fluid Mech. 198, 429451.Google Scholar
Antonia, R. A., Kim, J. & Browne, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.Google Scholar
Antonia, R. A., & Mi, J. 1993 Corrections for velocity and temperature derivatives in turbulent flows. Expts. Fluids (to appear.)Google Scholar
Antonia, R. A., Prabhu, A. & Stephenson, S. E. 1975 Conditionally sampled measurements in a heated turbulent jet. J. Fluid Mech. 72, 455480.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Bilger, R. W. 1989 Turbulent Diffusion Flames. Ann. Rev. Fluid Mech. 21, 101135.Google Scholar
Bisset, D. K., Antonia, R. A. & Browne, L. W. B. 1990 Spatial organization of large structures in the turbulent far wake of a cylinder. J. Fluid Mech. 218, 439461.Google Scholar
Broadwell, J. E. & Mungal, M. G. 1991 Large-scale structures and molecular mixing. Phys. Fluids A 3, 11931206.Google Scholar
Browne, L. W. B., Antonia, R. A. & Chambers, A. J. 1983a Effect of the separation between cold wires on the spatial derivatives of temperature in a turbulent flow. Boundary-Layer Met. 27, 129139.Google Scholar
Browne, L. W. B., Antonia, R. A., & Rajagopalan, S. 1983b The spatial derivative of temperature in a turbulent flow and Taylor's hypothesis. Phys. Fluids 26, 12221227.Google Scholar
Browne, L. W. B., Antonia, R. A., & Shah, D. A. 1987 Turbulent energy dissipation in a wake. J. Fluid Mech. 179, 307326.Google Scholar
Cervantes de Gortari, J. & Goldschmidt, V. W. 1981 The apparent flapping motion of a turbulent plane jet – further experimental results. Trans. ASME I: J. Fluids Engng 103, 119126.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.Google Scholar
Chua, L. P. 1989 Measurements in a turbulent circular jet PhD thesis, University of Newcastle, Australia.
Chua, L. P. & Antonia, R. A. 1986 The turbulent interaction region of a circular jet. Intl Commun. Heat Mass Transfer 13, 545558.Google Scholar
Chua, L. P. & Antonia, R. A. 1990 Turbulent Prandtl number in a circular jet. Intl J. Heat Mass Transfer 33, 331339.Google Scholar
Chua, L. P. & Antonia, R. A. 1992 Spatial organization of large structures in the near-field of a circular jet. Fluid Dyn. Res. 9, 5971.Google Scholar
Dimotakis, P. E., Miake-Lye, R. C. & Papantoniou, D. A. 1983 Structure and dynamics of round turbulent jets. Phys. Fluids 26, 31853192.Google Scholar
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.Google Scholar
George, W. K., Hussein, H. J. & Woodward, S. H. 1989 An evaluation of the effect of a fluctuating convection velocity on the validity of Taylor's hypothesis. In Proc. Tenth Australasian Fluid Mechanics Conference, Melbourne, pp. 11.511.8.
Hussein, H. J. 1988 Measurement of small scale turbulence in an axisymmetric jet using moving hot wires. Tech. Rep. 121, Turbulence Research Laboratory, State University of New York at Buffalo.
Hussein, H. J. & George, W. K. 1989 Measurement of small scale turbulence in an axisymmetric jet using moving hot-wires. In Proc. 7th Symp. on Turbulent Shear Flows, Stanford University, pp. 30.2130.26.
Klewicki, J. C. & Falco, R. E. 1990 On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes. J. Fluid Mech. 219, 119142.Google Scholar
Krishnamoorthy, L. V. & Antonia, R. A. 1987 Temperature dissipation measurements in a turbulent boundary layer. J. Fluid Mech. 176, 265281.Google Scholar
Lockwood, F. C. & Moneib, H. A. 1980 Fluctuating temperature measurements in a heated round free jet. Combust. Sci. Tech. 22, 6381.Google Scholar
Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 8, 10561062.Google Scholar
Lumley, J. L. & Panofsky, H. A. 1964 The Structure of Atmospheric Turbulence. Interscience.
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.Google Scholar
Mestayer, P. & Chambaud, P. 1979 Some limitations to measurements of turbulence microstructure with hot and cold wires. Boundary-Layer Met. 16, 311329.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol. 2. MIT Press.
Nagano, Y. & Kim, C. 1988 A two-equation model for heat transport in wall turbulent shear flows. Trans. ASME C: J. Heat Transfer 110, 583589.Google Scholar
Namazian, M., Schefer, R. W. & Kelly, J. 1988 Scalar dissipation measurements in the developing region of a jet. Combust. Flame 74, 147160.Google Scholar
Paranthoen, P., Petit, C. & Lecordier, J. C. 1982 The effect of thermal prong–wire interaction on the response of a cold wire in gaseous flows (air, argon and helium). J. Fluid Mech. 124, 457473.Google Scholar
Rose, W. G. 1966 Results of an attempt to generate a homogeneous turbulent shear flow. J. Fluid Mech. 25, 97120.Google Scholar
Sreenivasan, K. R. 1991 On local isotropy of passive scalars in turbulent shear flows. Proc. R. Soc. Lond. A 434, 165182.Google Scholar
Sreenivasan, K. R., Antonia, R. A. & Britz, D. 1979 Local isotropy and large structures in a heated turbulent jet. J. Fluid Mech. 94, 745775.Google Scholar
Sreenivasan, K. R., Antonia, R. A. & Danh, H. Q. 1977 Temperature dissipation fluctuations in a turbulent boundary layer. Phys. Fluids 20, 12381249.Google Scholar
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311347.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, Cambridge University Press.
Tso, J., Kovasznay, L. S. G. & Hussain, A. K. M. F. 1981 Search for large-scale coherent structure in the nearly self-preserving region of a turbulent axisymmetric jet. Trans. ASME I: J. Fluids Engng 103, 503508.Google Scholar
Tulapurkara, E. G., Antonia, R. A. & Browne, L. W. B. 1989 Optimisation of a θ2θ model for a turbulent far wake. In Proc. Seventh Symp. on Turbulent Shear Flows, Stanford, pp. 29.2.129.2.6.
Van Atta, C. W. 1977 Second-order spectral local isotropy in turbulent scalar fields. J. Fluid Mech. 80, 609615.Google Scholar
Van Cruyningen, I., Lozano, A. & Hanson, R. K. 1990 Quantitative imaging of concentration by planar laser-induced fluorescence. Expts. Fluids 10, 4149.Google Scholar
Verollet, E. 1972 Etude d'une couche limite turbulence avec aspiration et chauffage à la paroi. Thèse Doctorat ès Sciences, Université d'Aix-Marseille (also Rapport CEA-4872, 1977.)
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577612.Google Scholar
Wyngaard, J. C. 1968 Measurement of small scale turbulence structure with hot wires. J. Sci. Instrum. 1, 11051108.Google Scholar
Wyngaard, J. C. 1971 Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 4, 20522054.Google Scholar
Wyngaard, J. C. & Clifford, S. F. 1977 Taylor's hypothesis and high-frequency turbulence spectra. J. Atmos. Sci. 34, 922929.Google Scholar
Yoda, M., Hesselink, L. & Mungal, M. G. 1991 The temporal evolution of large-scale structures in the turbulent jet. Proc. Eighth Symp. on Turbulent Shear Flows, pp. 6-1-16-1-6.
Yoda, M., Hesselink, L. & Mungal, M. G. 1992 The evolution and nature of large-scale structures in the turbulent jet. Phys. Fluids A 4, 803811.Google Scholar