Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T18:31:51.557Z Has data issue: false hasContentIssue false

Taylor vortices in yield stress fluids with static wall layers on the outer cylinder

Published online by Cambridge University Press:  24 November 2023

S. Topayev
Affiliation:
Zhetysu University named after I. Zhansugurov, 187a Zhansugurova street, 040009 Taldykorgan, Kazakhstan
C. Nouar*
Affiliation:
LEMTA, UMR 7563, CNRS – Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 90161, 54505 Vandoeuvre Lès Nancy, France
I. Frigaard
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V67 1Z4, Canada
*
Email address for correspondence: [email protected]

Abstract

A linear stability analysis of circular Couette flow of a Bingham fluid subjected to axisymmetric perturbations was presented by Peng & Zhu (J. Fluid Mech., vol. 512, 2004, pp. 21–45) and Landry et al. (J. Fluid Mech., vol. 560, 2006, pp. 321–353). Here, we consider the stability of this flow with respect to a finite amplitude perturbation. We focus particularly on the case where the basic flow has an unyielded fluid layer on outer cylinder. A weakly nonlinear stability analysis is developed for a wide gap and a narrow gap. A third-order Ginzburg–Landau equation is derived, and the influence of the different nonlinearities on bifurcation features is investigated in detail. The results indicate that: (i) the nonlinear inertial terms act in favour of pitchfork supercritical bifurcation and the nonlinear yield stress terms promote a subcritical bifurcation; (ii) for a range of Bingham numbers $B$, the extent of which depends on the radius ratio and outer Reynolds number, the nonlinear yield stress terms are dominant and the primary bifurcation is subcritical. The amplitude analysis indicates that in the supercritical bifurcation regime, near the threshold, when the nonlinear inertial terms are dominant, the amplitude decreases slightly with increasing $B$. Once the nonlinear yield stress terms start to become significant, the equilibrium amplitude increases substantially with increasing $B$. Similar trends are observed for Taylor vortex strength. Finally, the erosion of the static layer is analysed. It is shown that the nonlinear yield stress terms play a significant role.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbessi, Y., Alibenyahia, B., Nouar, C., Lemaitre, C. & Choplin, L. 2015 Linear stability of Taylor–Couette flow of shear-thinning fluids: modal and non-modal approaches. J. Fluid Mech. 776, 354389.CrossRefGoogle Scholar
Agwu, O.E., Akpabio, J.U., Ekpenyong, M.E., Inyang, U.G., Asuquo, D.E., Eyoh, I.J. & Adeoye, O.S. 2021 A critical review of drilling mud rheological models. J. Petrol. Sci. Engng 203, 108659.CrossRefGoogle Scholar
Balmforth, N.J., Frigaard, I.A. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.CrossRefGoogle Scholar
Bird, R.B., Daii, G.C. & Yarusso, B.J. 1983 The rheology and flow of viscoplastic materials. Rev. Chem. Engng 1, 1110.CrossRefGoogle Scholar
Bonn, D., Denn, M., Berthier, L., Divoux, T. & Manneville, S. 2017 Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89 (3), 035005.CrossRefGoogle Scholar
Bouteraa, M., Nouar, C., Plaut, E., Métivier, C. & Kalck, A. 2015 Weakly nonlinear analysis of Rayleigh–Bénard convection in shear-thinning fluids: nature of the bifurcation and pattern selection. J. Fluid Mech. 767, 696734.CrossRefGoogle Scholar
Chandrasekhar, S. 1958 The stability of viscous flow between rotating cylinders. Proc. R. Soc. Lond. A 246 (1246), 301311.Google Scholar
Chandrasekhar, S. 2013 Hydrodynamic and Hydromagnetic Stability. Courier Corporation.Google Scholar
Chekila, A., Nouar, C., Plaut, E. & Nemdili, A. 2011 Subcritical bifurcation of shear-thinning plane Poiseuille flows. J. Fluid Mech. 686, 272298.CrossRefGoogle Scholar
Chen, C., Wan, Z.-H. & Zhang, W.-G. 2015 Transient growth in Taylor–Couette flow of a Bingham fluid. Phys. Rev. E 91 (4), 043202.CrossRefGoogle ScholarPubMed
Coussot, P. 1999 Saffman–Taylor instability in yield-stress fluids. J. Fluid Mech. 300, 363376.CrossRefGoogle Scholar
Coussot, P. 2017 Bingham's heritage. Rheol. Acta 56 (3), 163176.CrossRefGoogle Scholar
Davey, A. 1962 The growth of Taylor vortices in flow between rotating cylinders. J. Fluid Mech. 14 (3), 336368.CrossRefGoogle Scholar
Donnelly, R.J. 1958 Experiments on the stability of viscous flow between rotating cylinders. I. Torque measurements. Proc. R. Soc. Lond. A 246 (1246), 312325.Google Scholar
Frigaard, I. & Nouar, C. 2003 On three-dimensional linear stability of Poiseuille flow of Bingham fluids. Phys. Fluids 15 (10), 28432851.CrossRefGoogle Scholar
Frigaard, I.A., Howison, S.D. & Sobey, I.J. 1994 On the stability of Poiseuille flow of a Bingham fluid. J. Fluid Mech. 263, 133150.CrossRefGoogle Scholar
Frigaard, I.A. & Nouar, C. 2005 On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127 (1), 126.CrossRefGoogle Scholar
Fujimura, K. 1989 The equivalence between two perturbation methods in weakly nonlinear stability theory for parallel shear flows. Proc. R. Soc. Lond. A 424 (1867), 373392.Google Scholar
Fujimura, K. 1991 Methods of centre manifold and multiple scales in the theory of weakly nonlinear stability for fluid motions. Proc. R. Soc. Lond. A 434 (1892), 719733.Google Scholar
Generalis, S.C. & Fujimura, K. 2009 Range of validity of weakly nonlinear theory in the Rayleigh–Bénard problem. J. Phys. Soc. Japan 78 (8), 084401.CrossRefGoogle Scholar
Graebel, W.P. 1961 Stability of a Stokesian fluid in Couette flow. Phys. Fluids 4 (3), 362368.CrossRefGoogle Scholar
Hanks, R.W. 1967 On the flow of Bingham plastic slurries in pipes and between parallel plates. Soc. Petrol. Engng J. 7 (04), 342346.CrossRefGoogle Scholar
Hedström, B.O.A. 1952 Flow of plastic materials in pipes. Ind. Engng Chem. Res. 44 (3), 651656.CrossRefGoogle Scholar
Herbert, T. 1980 Nonlinear stability of parallel flows by high-ordered amplitude expansions. AIAA J. 18 (3), 243248.CrossRefGoogle Scholar
Herbert, T. 1983 On perturbation methods in nonlinear stability theory. J. Fluid Mech. 126, 167186.CrossRefGoogle Scholar
Jeng, J. & Zhu, K.Q. 2010 Numerical simulation of Taylor–Couette flow of Bingham fluids. J. Non-Newtonian Fluid Mech. 165 (19–20), 11611170.CrossRefGoogle Scholar
Landry, M.P., Frigaard, I.A. & Martinez, D.M. 2006 Stability and instability of Taylor–Couette flows of a Bingham fluid. J. Fluid Mech. 560, 321353.CrossRefGoogle Scholar
Manneville, P. & Czarny, O. 2009 Aspect-ratio dependence of transient Taylor vortices close to threshold. Theor. Comput. Fluid Dyn. 23, 1536.CrossRefGoogle Scholar
Martinand, D., Serre, E. & Lueptow, R.M. 2017 Linear and weakly nonlinear analyses of cylindrical Couette flow with axial and radial flows. J. Fluid Mech. 824, 438476.CrossRefGoogle Scholar
Metivier, C., Nouar, C. & Brancher, J.P. 2010 Weakly nonlinear dynamics of thermoconvective instability involving viscoplastic fluids. J. Fluid Mech. 660, 316353.CrossRefGoogle Scholar
Naimi, M., Devienne, R. & Lebouché, M. 1990 Etude dynamique et thermique de l’écoulement de Couette–Taylor–Poiseuille; cas d'un fluide présentant un seuil d’écoulement. Intl J. Heat Mass Transfer 33 (2), 381391.CrossRefGoogle Scholar
Nouar, C., Kabouya, N., Dusek, J. & Mamou, M. 2007 Modal and non-modal linear stability of the plane Bingham–Poiseuille flow. J. Fluid Mech. 577, 211239.CrossRefGoogle Scholar
Ovarlez, G., Rodts, S., Ragouilliaux, A., Coussot, P., Goyon, J. & Colin, A. 2008 Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys. Rev. E 78 (3), 036307.CrossRefGoogle ScholarPubMed
Papanastasiou, T.C. 1987 Flows of materials with yield. J. Rheol. 31 (5), 385404.CrossRefGoogle Scholar
Peng, J. & Zhu, K.-Q. 2004 Linear stability of Bingham fluids in spiral Couette flow. J. Fluid Mech. 512, 2145.CrossRefGoogle Scholar
Razzak, M.A., Khoo, B.C. & Lua, K.B. 2019 Numerical study on wide gap Taylor–Couette flow with flow transition. Phys. Fluids 31 (11), 113606.CrossRefGoogle Scholar
Sen, P.K. & Venkateswarlu, D. 1983 On the stability of plane Poiseuille flow to finite-amplitude disturbances, considering the higher-order Landau coefficients. J. Fluid Mech. 133, 179206.CrossRefGoogle Scholar
Topayev, S., Nouar, C., Bernardin, D., Neveu, A. & Bahrani, S.A. 2019 Taylor-vortex flow in shear-thinning fluids. Phys. Rev. E 100 (2), 023117.CrossRefGoogle ScholarPubMed
Trefethen, L.N. 2000 Spectral Methods in MATLAB. SIAM.CrossRefGoogle Scholar
Supplementary material: File

Topayev et al. supplementary material 1
Download undefined(File)
File 1.6 MB
Supplementary material: File

Topayev et al. supplementary material 2
Download undefined(File)
File 1 MB