Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T06:16:21.805Z Has data issue: false hasContentIssue false

Tangential stress beneath wind-driven air–water interfaces

Published online by Cambridge University Press:  10 June 1998

MICHAEL L. BANNER
Affiliation:
School of Mathematics, The University of New South Wales, Sydney, Australia, e-mail: [email protected]
WILLIAM L. PEIRSON
Affiliation:
School of Mathematics, The University of New South Wales, Sydney, Australia, e-mail: [email protected]

Abstract

The detailed structure of the aqueous surface sublayer flow immediately adjacent to the wind-driven air–water interface is investigated in a laboratory wind-wave flume using particle image velocimetry (PIV) techniques. The goal is to investigate quantitatively the character of the flow in this crucial, very thin region which is often disrupted by microscale breaking events. In this study, we also examine critically the conclusions of Okuda, Kawai & Toba (1977), who argued that for very short, strongly forced wind-wave conditions, shear stress is the dominant mechanism for transmitting the atmospheric wind stress into the water motion – waves and surface drift currents. In strong contrast, other authors have more recently observed very substantial normal stress contributions on the air side. The availability of PIV and associated image technology now permits a timely re-examination of the results of Okuda et al., which have been influential in shaping present perceptions of the physics of this dynamically important region. The PIV technique used in the present study overcomes many of the inherent shortcomings of the hydrogen bubble measurements, and allows reliable determination of the fluid velocity and shear within 200 μm of the instantaneous wind-driven air–water interface.

The results obtained in this study are not in accord with the conclusions of Okuda et al. that the tangential stress component dominates the wind stress. It is found that prior to the formation of wind waves, the tangential stress contributes the entire wind stress, as expected. With increasing distance downwind, the mean tangential stress level decreases marginally, but as the wave field develops, the total wind stress increases significantly. Thus, the wave form drag, represented by the difference between the total wind stress and the mean tangential stress, also increases systematically with wave development and provides the major proportion of the wind stress once the waves have developed beyond their early growth stage. This scenario reconciles the question of relative importance of normal and tangential stresses at an air–water interface. Finally, consideration is given to the extrapolation of these detailed laboratory results to the field, where the present findings suggest that the sea surface is unlikely to become fully aerodynamically rough, at least for moderate to strong winds.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)