Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T22:13:54.819Z Has data issue: false hasContentIssue false

Suspensions with a tunable effective viscosity: a numerical study

Published online by Cambridge University Press:  12 January 2012

L. Jibuti
Affiliation:
Laboratoire Interdisciplinaire de Physique – Université Joseph Fourier, Grenoble 1 – CNRS, BP87, F-38402 Saint Martin d’Hères, France
S. Rafaï
Affiliation:
Laboratoire Interdisciplinaire de Physique – Université Joseph Fourier, Grenoble 1 – CNRS, BP87, F-38402 Saint Martin d’Hères, France
P. Peyla*
Affiliation:
Laboratoire Interdisciplinaire de Physique – Université Joseph Fourier, Grenoble 1 – CNRS, BP87, F-38402 Saint Martin d’Hères, France
*
Email address for correspondence: [email protected]

Abstract

In this paper, we conduct a numerical investigation of sheared suspensions of non-colloidal spherical particles on which a torque is applied. Particles are mono-dispersed and neutrally buoyant. Since the torque modifies particle rotation, we show that it can indeed strongly change the effective viscosity of semi-dilute or even more concentrated suspensions. We perform our calculations up to a volume fraction of 28 %. And we compare our results to data obtained at 40 % by Yeo and Maxey (Phys. Rev. E, vol. 81, 2010, p. 62501) with a totally different numerical method. Depending on the torque orientation, one can increase (decrease) the rotation of the particles. This results in a strong enhancement (reduction) of the effective shear viscosity of the suspension. We construct a dimensionless number which represents the average relative angular velocity of the particles divided by the vorticity of the fluid generated by the shear flow. We show that the contribution of the particles to the effective viscosity can be suppressed for a given and unique value of independently of the volume fraction. In addition, we obtain a universal behaviour (i.e. independent of the volume fraction) when we plot the relative effective viscosity divided by the relative effective viscosity without torque as a function of . Finally, we show that a modified Faxén law can be equivalently established for large concentrations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bacri, J. C., Perzynski, R., Shliomis, M. I. & Burde, G. 1995 Negative-viscosity effect in a magnetic fluid. Phys. Rev. Lett. 75, 21282131.CrossRefGoogle Scholar
2. Bartok, W. & Mason, S. G. 1957 Particle motions in sheared suspensions. J. Colloid Sci. 12, 243262.CrossRefGoogle Scholar
3. Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
4. Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order . J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
5. Brady, J. F., Philips, R. J., Lester, J. C. & Bossis, G. 1988 Dynamic simulation of hydrodynamically interacting suspensions. J. Fluid Mech. 195, 257280.CrossRefGoogle Scholar
6. Brenner, H. 1970 Rheology of a dilute suspension of dipolar spherical particles in an external field. J. Colloid Interface Sci. 32, 141158.CrossRefGoogle Scholar
7. Cichocki, B. & Felderhof, B. U. 1988 Short-time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89, 10491054.CrossRefGoogle Scholar
8. Condiff, D. W. & Dahler, J. S. 1964 Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842854.CrossRefGoogle Scholar
9. Da Cunha, F. R. & Hinch, E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.CrossRefGoogle Scholar
10. Davit, Y. & Peyla, P. 2008 Intriguing viscosity effects in confined suspensions: a numerical study. Eur. Phys. Lett. 83, 64001.CrossRefGoogle Scholar
11. Einstein, A. 1906 Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. (Leipzig) 19, 289306.CrossRefGoogle Scholar
12. Einstein, A. 1911 Berichtigung zu meiner Arbeit: ‘Eine neue Bestimmung der Moleküldimensionen’. Ann. Phys. (Leipzig) 34, 591592.CrossRefGoogle Scholar
13. Feng, S., Graham, A. L., Abbott, J. R. & Brenner, H. 2006 Antisymmetric stresses in suspensions: vortex viscosity and energy dissipation. J. Fluid Mech. 563, 97122.CrossRefGoogle Scholar
14. Gadala-Maria, F. 1979 The rheology of concentrated suspensions. PhD thesis, Stanford University.Google Scholar
15. Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.CrossRefGoogle Scholar
16. Ichiki, K. & Prosperetti, A. 2004 Faxen-like relations for a non-uniform suspension. Phys. Fluids 16, 24832496.CrossRefGoogle Scholar
17. Ishikawa, T. & Pedley, T. J. 2007 The rheology of a semi-dilute suspension of swimming model micro-organisms. J. Fluid Mech. 588, 399435.CrossRefGoogle Scholar
18. Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. 102, 161179.Google Scholar
19. Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137152.CrossRefGoogle Scholar
20. Kromkamp, J., van den Ende, D., Kandhai, D., van der Sman, R. & Boom, R. 2006 Lattice Boltzmann simulation of 2D and 3D non-Brownian suspensions in Couette flow. Chem. Engng Sci. 61, 858873.CrossRefGoogle Scholar
21. Ladd, A. J. C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres. J. Chem. Phys. 93, 34843494.CrossRefGoogle Scholar
22. Landau, L. & Lifschitz, E. 1959 Fluid Mechanics. Pergamon.Google Scholar
23. Lemaire, E., Lobry, L. N., Pannacci, F. & Peters, 2008 Viscosity of an electro-rheological suspension with internal rotations. J. Rheol. 52, 769785.CrossRefGoogle Scholar
24. Lim, S., Park, S. M. & Kim, K. I. 2005 AI vibration control of high-speed rotor systems using electrorheological fluid. J. Sound Vib. 284, 685703.CrossRefGoogle Scholar
25. Marchioro, M., Tanksley, M. & Prosperetti, A. 2000 Flow of spatially non-uniform suspensions. Part I. Phenomenology. Intl J. Multiphase Flow 26, 783831.CrossRefGoogle Scholar
26. Marchioro, M., Tanksley, M., Wang, M. & Prosperetti, A. 2001 Flow of spatially non-uniform suspensions. Part II. Systematic derivation of closure relations. Intl J. Multiphase Flow 27, 237276.CrossRefGoogle Scholar
27. Marshall, L., Zukovski, C. F. & Goodwin, J. W. 1989 Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J. Chem. Soc. Faraday Trans. 85, 27852795.CrossRefGoogle Scholar
28. Maury, B. 2006 A time stepping scheme for inelastic collisions. Numer. Math. 102, 649679.CrossRefGoogle Scholar
29. Maury, B. 2009 Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47, 11261148.CrossRefGoogle Scholar
30. Mikulencak, D. R. & Morris, J. F. 2004 Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech. 520, 215242.CrossRefGoogle Scholar
31. Peyla, P. 2007 Rheology and dynamics of a deformable object in a microfluidic configuration: a numerical study. Eur. Phys. Lett. 80, 34001.CrossRefGoogle Scholar
32. Peyla, P. & Verdier, C. 2011 New confinement effects on the viscosity of suspensions. Eur. Phys. Lett. 94, 44001.CrossRefGoogle Scholar
33. Peyret, R. & Taylor, T. D. 1963 Computational Methods for Fluid Flow. Springer.Google Scholar
34. Phani, A. S. & Venkatraman, K. 2005 Damping characteristics of electro-rheological fluid sandwich beams. Acta. Mechanica 180, 195201.CrossRefGoogle Scholar
35. Rafaï, S., Jibuti, L. & Peyla, P. 2010 Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102.CrossRefGoogle ScholarPubMed
36. Rosensweig, R. E., Kaiser, R. & Miskolczy, C. 1969 Viscosity of magnetic fluid in a magnetic field. J. Colloid Interface Sci. 29, 680686.CrossRefGoogle Scholar
37. Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
38. Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46, 10311056.CrossRefGoogle Scholar
39. Tan, K. P., Stanway, R. & Bullough, W. A. 2006 Dynamic velocity response of an electro-rheological (ER) clutch for robotic applications. Mech. Adv. Mater. Struct. 13, 112.CrossRefGoogle Scholar
40. Tanaka, H. & Araki, T. 2000 Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics. Phys. Rev. Lett. 85, 13381341.CrossRefGoogle ScholarPubMed
41. Thomas, D. G. 1969 Transport characteristics of suspensions. Part VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 20, 267277.CrossRefGoogle Scholar
42. Wang, W. & Prosperetti, A. 2001 Flow of spatially non-uniform suspensions. Part III. Closure relations for porous media and spinning particles. Intl J. Multiphase Flow 27, 16271653.CrossRefGoogle Scholar
43. Yeo, K. & Maxey, M. R. 2010 Rheology and ordering transitions of non-Brownian suspensions in a confined shear flow: effects of external torques. Phys. Rev. E 81, 062501.CrossRefGoogle Scholar