Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:19:01.459Z Has data issue: false hasContentIssue false

Suspensions of viscoelastic capsules: effect of membrane viscosity on transient dynamics

Published online by Cambridge University Press:  13 September 2023

Fabio Guglietta*
Affiliation:
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauerstraße 1, 91058 Erlangen, Germany
Francesca Pelusi
Affiliation:
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauerstraße 1, 91058 Erlangen, Germany
Marcello Sega
Affiliation:
Department of Chemical Engineering, University College London, London WC1E 7JE, UK
Othmane Aouane
Affiliation:
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauerstraße 1, 91058 Erlangen, Germany
Jens Harting
Affiliation:
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauerstraße 1, 91058 Erlangen, Germany Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 1, 91058 Erlangen, Germany
*
Email address for correspondence: [email protected]

Abstract

Membrane viscosity is known to play a central role in the transient dynamics of isolated viscoelastic capsules by decreasing their deformation, inducing shape oscillations and reducing the loading time, that is, the time required to reach the steady-state deformation. However, for dense suspensions of capsules, our understanding of the influence of the membrane viscosity is minimal. In this work, we perform a systematic numerical investigation based on coupled immersed boundary–lattice Boltzmann (IB-LB) simulations of viscoelastic spherical capsule suspensions in the non-inertial regime. We show the effect of the membrane viscosity on the transient dynamics as a function of volume fraction and capillary number. Our results indicate that the influence of membrane viscosity on both deformation and loading time strongly depends on the volume fraction in a non-trivial manner: dense suspensions with large surface viscosity are more resistant to deformation but attain loading times that are characteristic of capsules with no surface viscosity, thus opening the possibility to obtain richer combinations of mechanical features.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

Present address: Istituto per le Applicazioni del Calcolo, CNR - Via dei Taurini 19, 00185 Rome, Italy.

References

Alizad Banaei, A., Loiseau, J., Lashgari, I. & Brandt, L. 2017 Numerical simulations of elastic capsules with nucleus in shear flow. Eur. J. Comput. Mech. 26 (1–2), 131153.CrossRefGoogle Scholar
Aouane, O., Scagliarini, A. & Harting, J. 2021 Structure and rheology of suspensions of spherical strain-hardening capsules. J. Fluid Mech. 911, A11.CrossRefGoogle Scholar
Bächer, C., Kihm, A., Schrack, L., Kaestner, L., Laschke, M.W., Wagner, C. & Gekle, S. 2018 Antimargination of microparticles and platelets in the vicinity of branching vessels. Biophys. J. 115 (2), 411425.CrossRefGoogle ScholarPubMed
Bagchi, P. & Kalluri, R.M. 2011 Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid. Mech. 669, 498526.CrossRefGoogle Scholar
Bah, M.G., Bilal, H.M. & Wang, J. 2020 Fabrication and application of complex microcapsules: a review. Soft Matt. 16 (3), 570590.CrossRefGoogle ScholarPubMed
Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100 (4), 831853.CrossRefGoogle Scholar
Barthès-Biesel, D. 1991 Role of interfacial properties on the motion and deformation of capsules in shear flow. Physica A 172 (1–2), 103124.CrossRefGoogle Scholar
Barthès-Biesel, D. 1993 Theoretical modelling of the motion and deformation of capsules in shear flows. Biomat. Artif. Cell 21 (3), 359373.Google ScholarPubMed
Barthès-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48 (1), 2552.CrossRefGoogle Scholar
Barthès-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.CrossRefGoogle Scholar
Barthès-Biesel, D. & Rallison, J.M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Barthès-Biesel, D. & Sgaier, H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.CrossRefGoogle Scholar
Batchelor, G.K. & Green, J.T. 1972 The determination of the bulk stress in a suspension of spherical particles to order $c^2$. J. Fluid Mech. 56 (3), 401.CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.CrossRefGoogle Scholar
Bielinski, C., Aouane, O., Harting, J. & Kaoui, B. 2021 Squeezing multiple soft particles into a constriction: transition to clogging. Phys. Rev. E 104, 065101.CrossRefGoogle ScholarPubMed
Braunmüller, S., Schmid, L., Sackmann, E. & Franke, T. 2012 Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation. Soft Matt. 8 (44), 11240.CrossRefGoogle Scholar
Chang, K.S. & Olbricht, W.L. 1993 Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 250, 609633.CrossRefGoogle Scholar
Chapman, S. & Cowling, T.G. 1990 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.Google Scholar
Clausen, J.R. & Aidun, C.K. 2010 Capsule dynamics and rheology in shear flow: particle pressure and normal stress. Phys. Fluids 22 (12), 123302.CrossRefGoogle Scholar
Clausen, J.R., Reasor, D.A. & Aidun, C.K. 2011 The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685, 202234.CrossRefGoogle Scholar
Cordasco, D. & Bagchi, P. 2013 Orbital drift of capsules and red blood cells in shear flow. Phys. Fluids 25 (9), 091902.CrossRefGoogle Scholar
Diaz, A., Barthès-Biesel, D. & Pelekasis, N. 2001 Effect of membrane viscosity on the dynamic response of an axisymmetric capsule. Phys. Fluids 13 (12), 38353838.CrossRefGoogle Scholar
Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12 (5), 948957.CrossRefGoogle Scholar
Dodson, W.R. & Dimitrakopoulos, P. 2009 Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes. J. Fluid Mech. 641, 263296.CrossRefGoogle Scholar
Einstein, A. 1906 Eine neue bestimmung der moleküldimensionen. Ann. Phys. 324 (2), 289306.CrossRefGoogle Scholar
Esposito, G., Romano, S., Hulsen, M.A., D'Avino, G. & Villone, M.M. 2022 Numerical simulations of cell sorting through inertial microfluidics. Phys. Fluids 34 (7), 072009.CrossRefGoogle Scholar
Finken, R. & Seifert, U. 2006 Wrinkling of microcapsules in shear flow. J. Phys.: Condens. Matterr 18 (15), L185L191.Google Scholar
Gekle, S. 2016 Strongly accelerated margination of active particles in blood flow. Biophys. J. 110 (2), 514520.CrossRefGoogle ScholarPubMed
Gounley, J., Boedec, G., Jaeger, M. & Leonetti, M. 2016 Influence of surface viscosity on droplets in shear flow. J. Fluid Mech. 791, 464494.CrossRefGoogle Scholar
Guglietta, F., Behr, M., Biferale, L., Falcucci, G. & Sbragaglia, M. 2020 On the effects of membrane viscosity on transient red blood cell dynamics. Soft Matt. 16, 61916205.CrossRefGoogle ScholarPubMed
Guglietta, F., Behr, M., Biferale, L., Falcucci, G. & Sbragaglia, M. 2021 a Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity. Phil. Trans. R. Soc. Lond. A 379 (2208), 20200395.Google ScholarPubMed
Guglietta, F., Behr, M., Falcucci, G. & Sbragaglia, M. 2021 b Loading and relaxation dynamics of a red blood cell. Soft Matt. 17, 59785990.CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308.CrossRefGoogle ScholarPubMed
Jülich Supercomputing Centre 2019 JUWELS: modular tier-0/1 supercomputer at the Jülich supercomputing centre. J. Large-Scale Res. Facilities 5, A135.CrossRefGoogle Scholar
Karyappa, R.B., Deshmukh, S.D. & Thaokar, R.M. 2014 Deformation of an elastic capsule in a uniform electric field. Phys. Fluids 26 (12), 122108.CrossRefGoogle Scholar
Keller, S.R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.CrossRefGoogle Scholar
Kim, K., Liu, X., Zhang, Y., Cheng, J., Yu Wu, X. & Sun, Y. 2009 Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed. Microdevices 11 (2), 421427.CrossRefGoogle ScholarPubMed
Krüger, T., Kaoui, B. & Harting, J. 2014 Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725745.CrossRefGoogle Scholar
Krüger, T. 2012 Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear. Springer Science & Business Media.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method, vol. 10 (978-3), pp. 415. Springer International.CrossRefGoogle Scholar
Krüger, T., Varnik, F. & Raabe, D. 2011 Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Maths Applics 61 (12), 34853505.CrossRefGoogle Scholar
Li, P. & Zhang, J. 2019 A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes. Intl J. Numer. Meth. Biomed. Engng 35 (6), e3200.CrossRefGoogle ScholarPubMed
Li, P. & Zhang, J. 2020 Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes. Biomech. Model. Mechanobiol. 19 (6), 26672681.CrossRefGoogle ScholarPubMed
Li, P. & Zhang, J. 2021 Similar but distinct roles of membrane and interior fluid viscosities in capsule dynamics in shear flows. Cardiovascular Engng 12 (2), 232249.CrossRefGoogle ScholarPubMed
Luo, Z.Y. & Bai, B.F. 2019 Solute release from an elastic capsule flowing through a microfluidic channel constriction. Phys. Fluids 31 (12), 121902.CrossRefGoogle Scholar
Maffettone, P.L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2–3), 227241.CrossRefGoogle Scholar
Matteoli, P, Nicoud, F. & Mendez, S. 2021 Impact of the membrane viscosity on the tank-treading behavior of red blood cells. Phys. Rev. Fluids 6 (4), 043602.CrossRefGoogle Scholar
Noguchi, H. & Gompper, G. 2005 Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys. Rev. E 72 (1), 011901.CrossRefGoogle ScholarPubMed
Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98 (12), 128103.CrossRefGoogle ScholarPubMed
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Pozrikidis, C. 1995 Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123152.CrossRefGoogle Scholar
Prado, G., Farutin, A., Misbah, C. & Bureau, L. 2015 Viscoelastic transient of confined red blood cells. Biophys. J. 108 (9), 21262136.CrossRefGoogle ScholarPubMed
Pranay, P., Henríquez-Rivera, R.G. & Graham, M.D. 2012 Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids. Phys. Fluids 24 (6), 061902.CrossRefGoogle Scholar
Qian, Y., d'Humières, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17 (6), 479.CrossRefGoogle Scholar
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.CrossRefGoogle Scholar
Rezghi, A., Li, P. & Zhang, J. 2022 Lateral migration of viscoelastic capsules in tube flow. Phys. Fluids 34 (1), 011906.CrossRefGoogle Scholar
Rezghi, A. & Zhang, J. 2022 Tank-treading dynamics of red blood cell in shear flow: on the membrane viscosity rheology. Biophys. J. 121, 33933410.CrossRefGoogle ScholarPubMed
Rorai, C., Touchard, A., Zhu, L. & Brandt, L. 2015 Motion of an elastic capsule in a constricted microchannel. Eur. Phys. J. E 38 (5), 49.CrossRefGoogle Scholar
Shen, Z., Farutin, A., Fischer, T.M., Vlahovska, P.M., Harting, J. & Misbah, C. 2018 Blood crystal: emergent order of red blood cells under wall-confined shear flow. Phys. Rev. Lett. 120, 268102.CrossRefGoogle ScholarPubMed
Skalak, R., Tozeren, A., Zarda, R.P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.CrossRefGoogle ScholarPubMed
Sun, F., Fu, J., Peng, Y., Jiao, X., Liu, H., Du, F. & Zhang, Y. 2021 Dual-functional intumescent fire-retardant/self-healing water-based plywood coatings. Prog. Org. Coat. 154, 106187.CrossRefGoogle Scholar
Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M. & Seufferlein, T. 2005 Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1 (1), 1530.CrossRefGoogle ScholarPubMed
Tomaiuolo, G., Barra, M., Preziosi, V., Cassinese, A., Rotoli, B. & Guido, S. 2011 Microfluidics analysis of red blood cell membrane viscoelasticity. Lab on a Chip 11 (3), 449454.CrossRefGoogle ScholarPubMed
Tomaiuolo, G. & Guido, S. 2011 Start-up shape dynamics of red blood cells in microcapillary flow. Microvasc. Res. 82 (1), 3541.CrossRefGoogle ScholarPubMed
Tomaiuolo, G., Lanotte, L., D'Apolito, R., Cassinese, A. & Guido, S. 2016 Microconfined flow behavior of red blood cells. Med. Engng Phys. 38 (1), 1116.CrossRefGoogle ScholarPubMed
Tran, S.B.Q., Le, Q.T., Leong, F.Y. & Le, D.V. 2020 Modeling deformable capsules in viscous flow using immersed boundary method. Phys. Fluids 32 (9), 093602.CrossRefGoogle Scholar
Tran-Son-Tay, R., Sutera, S.P. & Rao, P.R. 1984 Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J. 46 (1), 6572.CrossRefGoogle ScholarPubMed
Unverfehrt, A., Koleva, I. & Rehage, H. 2015 Deformation, orientation and bursting of microcapsules in simple shear flow: wrinkling processes, tumbling and swinging motions. In Journal of Physics: Conference Series (ed. L. Gömze), vol. 602, 012002. IOP.Google Scholar
Walter, A., Rehage, H. & Leonhard, H. 2001 Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloids Surf. (A) 183–185, 123132.CrossRefGoogle Scholar
Wouters, M.P.J., Aouane, O., Sega, M. & Harting, J. 2020 Capillary interactions between soft capsules protruding through thin fluid films. Soft Matt. 16, 10910.CrossRefGoogle ScholarPubMed
Yazdani, A. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech. 718, 569595.CrossRefGoogle Scholar
Zhang, J., Johnson, P.C. & Popel, A.S. 2007 An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys. Biol. 4 (4), 285295.CrossRefGoogle ScholarPubMed
Zhang, Y., Han, Y., Zhang, L., Chen, Q., Ding, M. & Shi, T. 2020 Dynamic mode of viscoelastic capsules in steady and oscillating shear flow. Phys. Fluids 32 (10), 103310.CrossRefGoogle Scholar