Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T22:07:03.121Z Has data issue: false hasContentIssue false

Surfing of drops on moving liquid–liquid interfaces

Published online by Cambridge University Press:  08 April 2020

Teng Dong
Affiliation:
ThAMeS Multiphase, Department of Chemical Engineering, University College London, LondonWC1E 7JE, UK
Fei Wang
Affiliation:
ThAMeS Multiphase, Department of Chemical Engineering, University College London, LondonWC1E 7JE, UK Beijing Institute of Space Long March Vehicle, No. 1 Nandahongmen Road, Fengtai District,Beijing100076, PR China
Weheliye H. Weheliye
Affiliation:
ThAMeS Multiphase, Department of Chemical Engineering, University College London, LondonWC1E 7JE, UK
Panagiota Angeli*
Affiliation:
ThAMeS Multiphase, Department of Chemical Engineering, University College London, LondonWC1E 7JE, UK
*
Email address for correspondence: [email protected]

Abstract

The delayed coalescence of drops with the interface between a moving aqueous layer and an oil phase is investigated in a novel flow channel. Drops are released onto oil–aqueous interfaces moving at velocities from $0~\text{cm}~\text{s}^{-1}$ up to $3.4~\text{cm}~\text{s}^{-1}$. The evolution of the drop shape, the film thickness between the drop and the bulk liquid, and the velocities of the drop surface and the bulk interface were measured with planar laser-induced fluorescence. As the interface speed increases, the drop coalescence is delayed. This is attributed to the lubrication pressure that develops in the draining film. This pressure was calculated by using the drop shape and the tangential velocities of the drop surface and the bulk interface, and was shown to increase with the interface velocity. The film forming between the drop and the bulk liquid has a dimple shape, symmetric about the centreline. With increasing interface velocity, the dimple shifts to the front part of the drop, resulting locally in a low pressure, which leads to film rupture. As the film breaks, ‘oil drops on a string’ formations are entrained into the water phase, which is rarely seen when a drop coalesces with a stationary liquid–liquid interface. The velocity fields in the drop were investigated with particle image velocimetry. It is found immediately after reaching the interface that the drops accelerate to reach the interface speed. Initially there is a strong internal circulation in the drops, which decays quickly as the drops approach the speed of the interface.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, D. G. L. & Lekkerkerker, H. N. W. 2008 Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems. J. Fluid Mech. 606, 275294.CrossRefGoogle Scholar
Andrade, B., Song, Z. Y., Li, J., Zimmerman, S. C., Cheng, J. J., Moore, J. S., Harris, K. & Katz, J. S. 2015 New frontiers for encapsulation in the chemical industry. ACS Appl. Mater. Interfaces 7 (12), 63596368.CrossRefGoogle ScholarPubMed
Aryafar, H. & Kavehpour, H. P. 2008 Hydrodynamic instabilities of viscous coalescing droplets. Phys. Rev. E 78 (3), 037302.Google ScholarPubMed
Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley, G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6 (8), 625631.CrossRefGoogle Scholar
Castrejón-Pita, J. R., Muñoz-Sánchez, B. N., Hutchings, I. M. & Castrejón-Pita, A. A. 2016 Droplet impact onto moving liquids. J. Fluid Mech. 809, 716725.CrossRefGoogle Scholar
Chan, D. Y. C., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matt. 7 (6), 22352264.CrossRefGoogle Scholar
Charles, C. E. & Mason, S. G. 1960 The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Interface Sci. 15 (3), 236267.Google Scholar
Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. 2005 From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94 (17), 177801.CrossRefGoogle ScholarPubMed
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20 (4), 040802.CrossRefGoogle Scholar
Dalili, A., Esmaeelpanah, J., Chandra, S. & Mostaghimi, J. 2017 Coalescence and agglomeration of droplets sprayed on a substrate. Atomiz. Sprays 27 (1), 8194.CrossRefGoogle Scholar
Damiano, A. P., Brun, P.-T., Harris, D. M., Galeano-Rios, C. A. & Bush, J. W. M. 2016 Surface topography measurements of the bouncing droplet experiment. Exp. Fluids 57 (10), 163.CrossRefGoogle Scholar
Davanlou, A. 2016 The role of liquid properties on lifetime of levitated droplets. Langmuir 32 (38), 97369742.CrossRefGoogle ScholarPubMed
Davis, D., Dransfield, P. & Tan, A. 1980 The stable floating liquid droplet phenomenon. In 7th Australasian Conference on Hydraulics and Fluid Mechanics 1980: Preprints of Papers, p. 451. Institution of Engineers, Australia.Google Scholar
Dell’Aversana, P., Banavar, J. R. & Koplik, J. 1996 Suppression of coalescence by shear and temperature gradients. Phys. Fluids 8 (1), 1528.CrossRefGoogle Scholar
Deng, N. N., Wang, W., Ju, X. J., Xie, R. & Chu, L. Y. 2016 Spontaneous transfer of droplets across microfluidic laminar interfaces. Lab on a Chip 16 (22), 43264332.CrossRefGoogle ScholarPubMed
Dijkhuizen, W., Roghair, I., Annaland, M. V. S. & Kuipers, J. A. M. 2010 DNS of gas bubbles behaviour using an improved 3D front tracking model—drag force on isolated bubbles and comparison with experiments. Chem. Engng Sci. 65 (4), 14151426.CrossRefGoogle Scholar
Dong, T., Weheliye, W. H. & Angeli, P. 2019 Laser induced fluorescence studies on the distribution of surfactants during drop/interface coalescence. Phys. Fluids 31 (1), 012106.CrossRefGoogle Scholar
Dong, T., Weheliye, W. H., Chausset, P. & Angeli, P. 2017 An experimental study on the drop/interface partial coalescence with surfactants. Phys. Fluids 29 (10), 102101.CrossRefGoogle Scholar
Duchemin, L., Lister, J. R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.CrossRefGoogle Scholar
Esmailizadeh, L. & Mesler, R. 1986 Bubble entrainment with drops. J. Colloid Interface Sci. 110 (2), 561574.CrossRefGoogle Scholar
Farhadi, H., Riahi, S., Ayatollahi, S. & Ahmadi, H. 2016 Experimental study of nanoparticle-surfactant-stabilized CO2 foam: stability and mobility control. Chem. Engng Res. Des. 111, 449460.CrossRefGoogle Scholar
Fathi, S., Dickens, P. & Fouchal, F. 2010 Regimes of droplet train impact on a moving surface in an additive manufacturing process. J. Mater. Process. Technol. 210 (3), 550559.CrossRefGoogle Scholar
Geri, M., Keshavarz, B., McKinley, G. H. & Bush, J. W. M. 2017 Thermal delay of drop coalescence. J. Fluid Mech. 833, R3.CrossRefGoogle Scholar
Hahn, P. S., Chen, J. D. & Slattery, J. C. 1985 Effects of London-van der Waals forces on the thinning and rupture of a dimpled liquid film as a small drop or bubble approaches a fluid–fluid interface. AlChE J. 31 (12), 20262038.CrossRefGoogle Scholar
Hale, J. & Akers, C. 2016 Deceleration of droplets that glide along the free surface of a bath. J. Fluid Mech. 803, 313331.CrossRefGoogle Scholar
Hamrock, B. J., Schmid, S. R. & Jacobson, B. O. 2004 Fundamentals of Fluid Film Lubrication. CRC.CrossRefGoogle Scholar
Hartland, S., Ramakrishnan, S. & Hartley, R. W. 1975 The oscillation of drops and spheres at fluidl iquid interfaces. Chem. Engng Sci. 30 (9), 11411148.CrossRefGoogle Scholar
Jafari, S. M., Assadpoor, E., He, Y. H. & Bhandari, B.Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll. 22 (7), 11911202.CrossRefGoogle Scholar
Kavehpour, H. P. 2015 Coalescence of drops. Annu. Rev. Fluid Mech. 47, 245268.CrossRefGoogle Scholar
Klaseboer, E., Chevaillier, J. P., Gourdon, C. & Masbernat, O. 2000 Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229 (1), 274285.CrossRefGoogle ScholarPubMed
Klyuzhin, I. S., Ienna, F., Roeder, B., Wexler, A. & Pollack, G. H. 2010 Persisting water droplets on water surfaces. J. Phys. Chem. B 114 (44), 1402014027.CrossRefGoogle ScholarPubMed
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Lee, S., Li, E. Q., Marston, J. O., Bonito, A. & Thoroddsen, S. T. 2013 Leaping shampoo glides on a lubricating air layer. Phys. Rev. E 87 (6), 061001.Google ScholarPubMed
Lhuissier, H., Tagawa, Y., Tran, T. & Sun, C. 2013 Levitation of a drop over a moving surface. J. Fluid Mech. 733, R4.CrossRefGoogle Scholar
Li, E. Q., Zhang, J. M. & Thoroddsen, S. T. 2013 Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions. J. Micromech. Microengng 24 (1), 015019.Google Scholar
Mohamed-Kassim, Z. & Longmire, E. K. 2003 Drop impact on a liquid–liquid interface. Phys. Fluids 15 (11), 32633273.CrossRefGoogle Scholar
Mohamed-Kassim, Z. & Longmire, E. K. 2004 Drop coalescence through a liquid/liquid interface. Phys. Fluids 16 (7), 21702181.CrossRefGoogle Scholar
Moláček, J. & Bush, J. W. M. 2013 Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.CrossRefGoogle Scholar
Muijlwijk, K., Colijn, I., Harsono, H., Krebs, T., Berton-Carabin, C. & Schroën, K. 2017 Coalescence of protein-stabilised emulsions studied with microfluidics. Food Hydrocoll. 70, 96104.CrossRefGoogle Scholar
Murano, M. & Okumura, K. 2018 Bursting dynamics of viscous film without circular symmetry: the effect of confinement. Phys. Rev. Fluids 3 (3), 031601.CrossRefGoogle Scholar
Nakayama, Y. 2018 Introduction to Fluid Mechanics. Butterworth-Heinemann.Google Scholar
Napolitano, L. G., Monti, R. & Russo, G. 1986 Marangoni convection in one-and two-liquids floating zones. Naturwissenschaften 73 (7), 352355.CrossRefGoogle Scholar
Oldenziel, G., Delfos, R. & Westerweel, J. 2012 Measurements of liquid film thickness for a droplet at a two-fluid interface. Phys. Fluids 24 (2), 022106.CrossRefGoogle Scholar
Oudheusden, B. W. V. 2013 PIV-based pressure measurement. Meas. Sci. Technol. 24 (3), 032001.Google Scholar
Pirat, C., Lebon, L., Fruleux, A., Roche, J. S. & Limat, L. 2010 Gyroscopic instability of a drop trapped inside an inclined circular hydraulic jump. Phys. Rev. Lett. 105 (8), 084503.CrossRefGoogle ScholarPubMed
Pucci, G., Harris, D. M., Faria, L. M. & Bush, J. W. M. 2018 Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 11361156.CrossRefGoogle Scholar
Reynolds, O. 1881 On drops floating on the surface of water. Chem. News 44 (1881), 211.Google Scholar
Rommel, W., Blass, E. & Meon, W. 1993 Plate separators for dispersed liquid–liquid systems: the role of partial coalescence. Chem. Engng Sci. 48 (10), 17351743.CrossRefGoogle Scholar
Sajjadi, S., Zerfa, M. & Brooks, B. W. 2002 Dynamic behaviour of drops in oil/water/oil dispersions. Chem. Engng Sci. 57 (4), 663675.CrossRefGoogle Scholar
Sambath, K., Garg, V., Thete, S. S., Subramani, H. J. & Basaran, O. A. 2019 Inertial impedance of coalescence during collision of liquid drops. J. Fluid Mech. 876, 449480.CrossRefGoogle Scholar
Savino, R., Paterna, D. & Lappa, M. 2003 Marangoni flotation of liquid droplets. J. Fluid Mech. 479, 307326.CrossRefGoogle Scholar
Sawaguchi, E., Matsuda, A., Hama, K., Saito, M. & Tagawa, Y. 2019 Droplet levitation over a moving wall with a steady air film. J. Fluid Mech. 862, 261282.CrossRefGoogle Scholar
Sáenz, P. J., Cristea-Platon, T. & Bush, J. W. M. 2018 Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. 14 (3), 315.CrossRefGoogle Scholar
Smith, M. K. & Neitzel, G. P. 2006 Multiscale modelling in the numerical computation of isothermal non-wetting. J. Fluid Mech. 554, 6783.CrossRefGoogle Scholar
Sreenivas, K. R., De, P. K. & Arakeri, J. H. 1999 Levitation of a drop over a film flow. J. Fluid Mech. 380, 297307.CrossRefGoogle Scholar
Tcholakova, S., Denkov, N. D., Ivanov, I. B. & Campbell, B. 2006 Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid Interface Sci. 123, 259293.CrossRefGoogle ScholarPubMed
Thoroddsen, S. T. & Mahadevan, L. 1997 Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Exp. Fluids 23 (1), 113.CrossRefGoogle Scholar
Vakarelski, I. U., Yang, F., Tian, Y. S., Li, E. Q., Chan, D. Y. C. & Thoroddsen, S. T. 2019 Mobile-surface bubbles and droplets coalesce faster but bounce stronger. Sci. Adv 5 (10), eaaw4292.CrossRefGoogle ScholarPubMed
Venkataraman, P., Tang, J. J., Frenkel, E., McPherson, G. L., He, J. B., Raghavan, S. R., Kolesnichenko, V., Bose, A. & John, V. T. 2013 Attachment of a hydrophobically modified biopolymer at the oil–water interface in the treatment of oil spills. ACS Appl. Mater. Interfaces 5 (9), 35723580.CrossRefGoogle ScholarPubMed
Walker, J.1978 Drops of Liquid Can be Made to Float on the Liquid. The Amateur Scientist.CrossRefGoogle Scholar
Yeo, L. Y. & Matar, O. K. 2003 Hydrodynamic instability of a thin viscous film between two drops. J. Colloid Interface Sci. 261 (2), 575579.CrossRefGoogle ScholarPubMed
Yiantsios, S. G. & Davis, R. H. 1990 On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. J. Fluid Mech. 217, 547573.CrossRefGoogle Scholar

Dong et al. supplementary movie 1

The traveling drop along with the interface at v =3.4 cm/s from the impact position

Download Dong et al. supplementary movie 1(Video)
Video 15.6 MB

Dong et al. supplementary movie 2

Non-coalescence of pendent drop at the moving interface of v = 2.1 cm/s.

Download Dong et al. supplementary movie 2(Video)
Video 5.9 MB

Dong et al. supplementary movie 3

The coalescence where the rupture point locates in the front bottom of the drop.

Download Dong et al. supplementary movie 3(Video)
Video 18.1 MB

Dong et al. supplementary movie 4

Formation of the drops-on-string during the film breakage at the interface of v = 3.4 cm/s.

Download Dong et al. supplementary movie 4(Video)
Video 6.9 MB