Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T18:57:48.667Z Has data issue: false hasContentIssue false

Surface water waves over a shallow canopy

Published online by Cambridge University Press:  11 March 2015

Benlong Wang
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
Xiaoyu Guo
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
Chiang C. Mei*
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

The dynamics of water waves passing over a vegetation canopy is modelled theoretically. To simplify the geometry, we examine a periodic array of vertical cylinders fixed on a slowly varying seabed. The macroscale behaviour of wave attenuation is predicted based on microscale dynamics between plants. Interstitial turbulence is modelled by Reynolds equations with a locally constant eddy viscosity determined by energy considerations. Using the asymptotic method of multiple-scale expansions, the slow evolution of waves is derived by considering the coupling with the small-scale motion in the canopy. After numerical solution of the canonical boundary-value problem in a few unit cells, predictions of macroscale effects such as wave attenuation are made and compared with laboratory experiments. The counteracting effects of shoaling and dissipation are discussed for different vegetation densities.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allender, J. & Petrauskas, C.1987 Measured and predicted wave plus current loading on a laboratory-scale, space frame structure. In Proceedings of Offshore Technology Conference OTC 5371.Google Scholar
Augustin, L. N., Irish, J. L. & Lynett, P. 2009 Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coast. Engng 56, 332340.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.CrossRefGoogle Scholar
Bearman, P. W., Graham, J. M. R. & Singh, S. 1979 Forces on cylinders in harmonically oscillating flow. In Proceedings of Mechanics of Wave-Induced Forces on Cylinders (ed. Shaw, T. L.), pp. 437449. Pitman.Google Scholar
Bowen, A. J., Inman, D. L. & Simmons, V. P. 1968 Wave ‘set-down’ and set-up. J. Geophys. Res. 73 (8), 25692577.CrossRefGoogle Scholar
Cheng, N. S. & Nguyen, H. T. 2011 Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J. Hydraul. Engng 137 (9), 9951004.CrossRefGoogle Scholar
Coceal, O. & Belcher, S. 2004 A canopy model of mean winds through urban areas. Q. J. R. Meteorol. Soc. 130, 13491372.CrossRefGoogle Scholar
Dalrymple, R. A., Kirby, J. T. & Hwang, P. A. 1984 Wave diffraction due to areas of energy dissipation. J. Waterways Port Coast. Ocean Engng 110 (1), 6779.CrossRefGoogle Scholar
Faltinsen, O. M. 1990 Sea Loads on Ships and Offshore Structures. pp. 245248. Cambridge University Press.Google Scholar
Ghisalberti, M. & Schlosser, T. 2013 Vortex generation in oscillatory canopy flow. J. Geophys. Res. Oceans 118, 15341542.CrossRefGoogle Scholar
Guo, X., Wang, B. & Mei, C. C. 2014 Flow and solute transport through a periodic array of vertical cylinders in shallow water. J. Fluid Mech. 756, 903934.CrossRefGoogle Scholar
Hiraishi, T. & Harada, K. 2003 Greenbelt tsunami prevention in South-Pacific region. Rep. Port Airport Res. Inst. 43 (2), 123.Google Scholar
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W. & Stive, M. 2014 Laboratory study on wave dissipation by vegetation in combined current–wave flow. Coast. Engng 88, 131142.CrossRefGoogle Scholar
Huang, Z., Yu, Y., Shawn, Y. S. & Yao, Y. 2011 Interaction of solitary waves with emergent, rigid vegetation. Ocean Engng 38, 10801088.CrossRefGoogle Scholar
Kobayashi, N., Raichlen, A. W. & Asano, T. 1993 Wave attenuation by vegetation. J. Waterways Port Coast. Ocean Engng 119 (1), 3048.CrossRefGoogle Scholar
Li, C. W. & Yan, K. 2007 Numerical investigation of wave–current–vegetation interaction. J. Hydraul. Engng 133 (7), 794803.CrossRefGoogle Scholar
Liu, D., Diplas, P., Faribanks, J. D. & Hodges, C. C. 2008 An experimental study of flow through rigid vegetation. J. Geophys. Res. 113, F04015.Google Scholar
Liu, P. L.-F., Chang, C. W., Mei, C. C., Lomonaco, P., Martin, F. L. & Maza, M. E. 2015 Periodic water waves through forest. Coast. Engng 96, 100117.CrossRefGoogle Scholar
Lowe, R. J., Falter, J. L., Koseff, J. R., Monismith, S. G. & Atkinson, M. J. 2007 Spectral wave flow attenuation within submerged canopies: implications for wave energy dissipation. J. Geophys. Res. 112, C05018.Google Scholar
Lowe, R. J., Koseff, J. R. & Monismith, S. G. 2005 Oscillatory flow through submerged canopies: 1. Velocity structure. J. Geophys. Res. 110, C10016.Google Scholar
Maza, M., Lara, J. L. & Losada, I. J. 2013 A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations. Coast. Engng 80, 1634.CrossRefGoogle Scholar
Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves. World Scientific.Google Scholar
Mei, C. C., Chan, I.-C. & Liu, P. L.-F. 2014 Waves of intermediate length through an array of vertical cylinders. Environ. Fluid Mech. 14, 235261.CrossRefGoogle Scholar
Mei, C. C., Chan, I.-C., Liu, P. L.-F., Huang, Z. & Zhang, W. 2011 Long waves through emergent coastal vegetation. J. Fluid Mech. 687, 461491.CrossRefGoogle Scholar
Mei, C. C., Stiassnie, M. & Yue, D. K.-P. 2005 Theory and Applications of Ocean Surface Waves. Part I: Linear Aspects. World Scientific.Google Scholar
Mo, W.2010 Numerical investigation of solitary wave interaction with group of cylinders. PhD thesis, Cornell University.Google Scholar
Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35 (2), 479489.CrossRefGoogle Scholar
Santo, H., Taylor, P. H., Williamson, C. H. K. & Choo, Y. S. 2014 Current blockage experiments: force time histories on obstacle arrays in combined steady and oscillatory motion. J. Fluid Mech. 739, 143178.CrossRefGoogle Scholar
Sarpkaya, T. 2010 Wave Forces on Offshore Structures. Cambridge University Press.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Spalart, P. R. & Allmaras, S. R. 1994 A one-equation turbulence model for aerodynamics flows. La Rech. Aérospatiale 1, 521.Google Scholar
Stoesser, T., Salvador, G. P., Rodi, W. & Diplas, P. 2009 Large eddy simulation of turbulent flow through submerged vegetation. Transp. Porous Med. 78, 347365.CrossRefGoogle Scholar
Tang, J., Causon, D., Mingham, C. & Qian, L. 2013 Numerical study of vegetation damping effects on solitary wave run-up using the nonlinear shallow water equations. Coast. Engng 75, 2128.CrossRefGoogle Scholar
Vo-Luong, P. & Massel, S. 2008 Energy dissipation in non-uniform mangrove forests of arbitrary depth. J. Mar. Syst. 74, 603622.CrossRefGoogle Scholar
Wu, J. S. & Faeth, G. M. 1994a Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32 (3), 535541.CrossRefGoogle Scholar
Wu, J. S. & Faeth, G. M. 1994b Effect of ambient turbulence intensity on sphere wake at intermediate Reynolds numbers. AIAA J. 33 (1), 171173.CrossRefGoogle Scholar
Wu, W., Zhang, M., Ozeren, Y. & Wren, D. 2013 Analysis of vegetation effect on waves using a vertical 2D RANS model. J. Coast. Res. 29 (2), 383397.CrossRefGoogle Scholar