Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T09:24:05.809Z Has data issue: false hasContentIssue false

Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave

Published online by Cambridge University Press:  06 December 2011

Yunqiao Liu*
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Kazuyasu Sugiyama
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Shu Takagi
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Organ and Body Scale Team, CSRP, Riken, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
Yoichiro Matsumoto
Affiliation:
Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
*
Email address for correspondence: [email protected]

Abstract

In this paper, we investigate the shape stability of a nearly spherical bubble encapsulated by a viscoelastic membrane in an ultrasound field. To describe the dynamic balance on the bubble surface, the in-plane stress and the bending moment are incorporated into the governing equations for the perturbed radial flow of viscous incompressible fluid (Prosperetti, Q. Appl. Math., vol. 34, 1977, p. 339). The radial motion of the bubble is obtained by solving the Rayleigh–Plesset equation with elastic stress. The deflection therefrom is linearized and expanded with respect to the Legendre polynomial of order . Two amplitudes for each shape mode are introduced because the membrane moves not only in the radial direction but also in the tangential direction. The system with a boundary layer approximation is reduced to Mathieu’s equation. A simple expression for the natural frequency of the shape mode is derived, which is validated by direct numerical simulation. Stability diagrams for the higher-order shape mode are mapped out in the phase space of driving amplitude and frequency over a range of values of the elastic modulus of the membrane. The most unstable driving frequency is found to satisfy an integer multiple relationship of the form , due to the structure of Mathieu’s equation in the system. In addition to the resonance interaction, liquid viscosity plays an important role in the stability of the encapsulated bubble.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. An, Y., Lu, T. & Yang, B. 2005 Instability of sonoluminescing bubbles under a nonspherical symmetrical acoustic-pressure perturbation. Phys. Rev. E 71 (2), 26310.CrossRefGoogle Scholar
2. Barthès-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100, 931953.CrossRefGoogle Scholar
3. Barthès-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
4. Barthès-Biesel, D. & Sgaier, H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.CrossRefGoogle Scholar
5. Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
6. Benjamin, T. B. 1964 Surface effects in non-spherical motions of small cavities. In Cavitation in Real Liquids, pp. 164180. Elsevier.Google Scholar
7. Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425484.CrossRefGoogle Scholar
8. Brenner, M. P., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75 (5), 954957.CrossRefGoogle ScholarPubMed
9. Chapman, R. B. & Plesset, M. S. 1971 Thermal effects in the free oscillations of gas bubbles. ASME J. Basic Engng 93, 373376.CrossRefGoogle Scholar
10. Chomas, J. E., Dayton, P. A., May, D., Allen, J., Klibanov, A. & Ferrara, K. 2000 Optical observation of contrast agent destruction. Appl. Phys. Lett. 77, 10561058.CrossRefGoogle Scholar
11. Church, C. C. 1995 The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J. Acoust. Soc. Am. 97, 15101521.CrossRefGoogle Scholar
12. Diaz, A., Pelekasis, N. & Barthès-Biesel, D. 2000 Transient response of a capsule subjected to varying flow conditions: effect of internal fluid viscosity and membrane elasticity. Phys. Fluids 12, 948957.CrossRefGoogle Scholar
13. Dollet, B., van der Meer, S. M., Garbin, V., de Jong, N., Lohse, D. & Versluis, M. 2008 Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34 (9), 14651473.CrossRefGoogle ScholarPubMed
14. Feng, Z. C. & Leal, L. G. 1993 On energy transfer in resonant bubble oscillations. Phys. Fluids A 5, 826836.CrossRefGoogle Scholar
15. Feng, Z. C. & Leal, L. G. 1997 Nonlinear bubble dynamics. Annu. Rev. Fluid Mech. 29 (1), 201243.CrossRefGoogle Scholar
16. Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
17. Green, A. E. & Adkins, J. E. 1960 Large Elastic Deformations and Non-Linear Continuum Mechanics. Clarendon Press Oxford.Google Scholar
18. Hao, Y. & Prosperetti, A. 1999 The effect of viscosity on the spherical stability of oscillating gas bubbles. Phys. Fluids 11, 13091317.CrossRefGoogle Scholar
19. Hilgenfeldt, S., Lohse, D. & Brenner, M. P. 1996 Phase diagrams for sonoluminescing bubbles. Phys. Fluids 21, 28082826.CrossRefGoogle Scholar
20. Hoff, L. 2001 Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging. Springer.CrossRefGoogle Scholar
21. Hoff, L., Sontum, P. C. & Hovem, J. M. 2000 Oscillations of polymeric microbubbles: effect of the encapsulating shell. J. Acoust. Soc. Am. 107, 22722280.CrossRefGoogle ScholarPubMed
22. Holzapfel, G. A. 2000 Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley.Google Scholar
23. Holzfuss, J. 2008 Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence. Phys. Rev. E 77 (6), 66309.CrossRefGoogle Scholar
24. de Jong, N., Cornet, R. & Lancée, C. T. 1994 Higher harmonics of vibrating gas-filled microspheres. Part I. Simulations. Ultrasonics 32 (6), 447453.CrossRefGoogle Scholar
25. Khismatullin, D. B. 2004 Resonance frequency of microbubbles: effect of viscosity. J. Acoust. Soc. Am. 116, 14631473.CrossRefGoogle ScholarPubMed
26. Kviklienė, A., Jurkonis, R., Ressner, M., Hoff, L., Jansson, T., Janerot-Sjöberg, B., Lukosevicius, A. & Ask, P. 2004 Modelling of nonlinear effects and the response of ultrasound contrast micro bubbles: simulation and experiment. Ultrasonics 42 (1–9), 301307.CrossRefGoogle ScholarPubMed
27. Lac, E., Barthes-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.CrossRefGoogle Scholar
28. Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
29. Leyrat-Maurin, A. & Barthes-Biesel, D. 1994 Motion of a deformable capsule through a hyperbolic constriction. J. Fluid Mech. 279, 135163.CrossRefGoogle Scholar
30. Li, X. Z., Barthès-Biesel, D. & Helmy, A. 1988 Large deformations and burst of a capsule freely suspended in an elongational flow. J. Fluid Mech. 187, 179196.CrossRefGoogle Scholar
31. Lindner, J. R. 2004 Microbubbles in medical imaging: current applications and future directions. Nat. Rev. Drug Discov. 3 (6), 527533.CrossRefGoogle ScholarPubMed
32. Liu, Y., Sugiyama, K., Takagi, S. & Matsumoto, Y. 2011 Numerical study on the shape oscillation of an encapsulated microbubble in ultrasound field. Phys. Fluids 23, 041904.CrossRefGoogle Scholar
33. Love, A. E. H. 1888 The small free vibrations and deformation of a thin elastic shell. Phil. Trans. R. Soc. Lond. A 179, 491546.Google Scholar
34. Marmottant, P., van der Meer, S., Emmer, M., Versluis, M., de Jong, N., Hilgenfeldt, S. & Lohse, D. 2005 A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J. Acoust. Soc. Am. 118, 34993505.CrossRefGoogle Scholar
35. van der Meer, S. M., Dollet, B., Voormolen, M. M., Chin, C. T., Bouakaz, A., de Jong, N., Versluis, M. & Lohse, D. 2007 Microbubble spectroscopy of ultrasound contrast agents. J. Acoust. Soc. Am. 121, 648656.CrossRefGoogle ScholarPubMed
36. Mooney, M. 1940 A theory of large elastic deformation. J. Appl. Phys. 11, 582592.CrossRefGoogle Scholar
37. Overvelde, M., Garbin, V., Sijl, J., Dollet, B., de Jong, N., Lohse, D. & Versluis, M. 2010 Nonlinear shell behaviour of phospholipid-coated microbubbles. Ultrasound Med. Biol. 36 (12), 20802092.CrossRefGoogle ScholarPubMed
38. Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.CrossRefGoogle Scholar
39. Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1), 145185.CrossRefGoogle Scholar
40. Postema, M., Van Wamel, A., Lancée, C. T. & De Jong, N. 2004 Ultrasound-induced encapsulated microbubble phenomena. Ultrasound Med. Biol. 30 (6), 827840.CrossRefGoogle ScholarPubMed
41. Pozrikidis, C. 1990 The axisymmetric deformation of a red blood cell in uniaxial straining stokes flow. J. Fluid Mech. 216 (-1), 231254.CrossRefGoogle Scholar
42. Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440 (-1), 269291.CrossRefGoogle Scholar
43. Pozrikidis, C. 2003a Deformed shapes of axisymmetric capsules enclosed by elastic membranes. J. Engng Maths 45 (2), 169182.CrossRefGoogle Scholar
44. Pozrikidis, C. 2003b Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Engng 31 (10), 11941205.CrossRefGoogle ScholarPubMed
45. Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17, 031503.CrossRefGoogle Scholar
46. Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34, 339352.CrossRefGoogle Scholar
47. Prosperetti, A. 1991 The thermal behaviour of oscillating gas bubbles. J. Fluid Mech. 222, 587616.CrossRefGoogle Scholar
48. Quéguiner, C. & Barthès-Biesel, D. 1997 Axisymmetric motion of capsules through cylindrical channels. J. Fluid Mech. 348, 349376.CrossRefGoogle Scholar
49. Sarkar, K., Shi, W. T., Chatterjee, D. & Forsberg, F. 2005 Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J. Acoust. Soc. Am. 118, 539550.CrossRefGoogle ScholarPubMed
50. Stride, E. 2008 The influence of surface adsorption on microbubble dynamics. Phil. Trans. R. Soc. A 366 (1873), 21032115.CrossRefGoogle ScholarPubMed
51. Takahira, H., Akamatsu, T. & Fujikawa, S. 1991 Dynamics of two nonspherical bubbles in a viscous liquid. Trans. JSME B 57, 447455.CrossRefGoogle Scholar
52. Tsiglifis, K. & Pelekasis, N. A. 2008 Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law. J. Acoust. Soc. Am. 123, 40594070.CrossRefGoogle ScholarPubMed
53. Tsiglifis, K. & Pelekasis, N. A. 2011 Parametric stability and dynamic buckling of an encapsulated microbubble subject to acoustic disturbances. Phys. Fluids 23, 012102.CrossRefGoogle Scholar
54. Unger, E. C., Hersh, E., Vannan, M., Matsunaga, T. O. & McCreery, T. 2001 Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44 (1), 4554.CrossRefGoogle ScholarPubMed
55. Versluis, M., Goertz, D. E., Palanchon, P., Heitman, I. L., van der Meer, S. M., Dollet, B., de Jong, N. & Lohse, D. 2010 Microbubble shape oscillations excited through ultrasonic parametric driving. Phys. Rev. E 82 (2), 026321.CrossRefGoogle ScholarPubMed
56. Yang, S. M., Feng, Z. C. & Leal, L. G. 1993 Nonlinear effects in the dynamics of shape and volume oscillations for a gas bubble in an external flow. J. Fluid Mech. 247, 417454.CrossRefGoogle Scholar