Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T18:48:56.280Z Has data issue: false hasContentIssue false

Suppression of internal waves by thermohaline staircases

Published online by Cambridge University Press:  07 September 2020

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA93943, USA
*
Email address for correspondence: [email protected]

Abstract

This study attempts to quantify and explain the systematic weakening of internal gravity waves in fingering and diffusive thermohaline staircases. The interaction between waves and staircases is explored using a combination of direct numerical simulations (DNS) and an asymptotic multiscale model. The multiscale theory makes it possible to express the wave decay rate $({\lambda _d})$ as a function of its wavenumbers and staircase parameters. We find that the decay rates in fully developed staircases greatly exceed values that can be directly attributed to molecular dissipation. They rapidly increase with increasing wavenumbers, both vertical and horizontal. At the same time, ${\lambda _d}$ is only weakly dependent on the thickness of layers in the staircase, the overall density ratio and the diffusivity ratio. The proposed physical mechanism of attenuation emphasizes the significance of eddy diffusion of temperature and salinity, whereas eddy viscosity plays a secondary role in damping internal waves. The asymptotic model is successfully validated by the DNS performed in numerically accessible regimes. We also discuss potential implications of staircase-induced suppression for diapycnal mixing by overturning internal waves in the ocean.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.CrossRefGoogle Scholar
Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.CrossRefGoogle Scholar
Bebieva, Y. & Speer, K. 2019 The regulation of sea ice thickness by double-diffusive processes in the Ross Gyre. J. Geophys. Res.: Oceans 124, 70687081.CrossRefGoogle Scholar
Carpenter, J. R., Sommer, T. & Wuest, A. 2012 Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech. 711, 411436.CrossRefGoogle Scholar
Cole, S. T., Toole, J. M., Rainville, L. & Lee, C. M. 2018 Internal waves in the Arctic: influence of ice concentration, ice roughness, and surface layer stratification. J. Geophys. Res.: Oceans 123, 55715586.CrossRefGoogle Scholar
Fernando, H. J. S. 1989 Buoyancy transfer across a diffusive interface. J. Fluid Mech. 209, 134.CrossRefGoogle Scholar
Flanagan, J., Lefler, A. & Radko, T. 2013 Heat transport through diffusive interfaces. Geophys. Res. Lett. 40, 24662470.CrossRefGoogle Scholar
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.CrossRefGoogle Scholar
Garaud, P. 2018 Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech. 50, 275298.CrossRefGoogle Scholar
Garrett, C. & Munk, W. 1972 Space-time scales of ocean internal waves. Geophys. Fluid Dyn. 3, 225264.CrossRefGoogle Scholar
Ghaemsaidi, S., Dosser, H. V., Rainville, L. & Peacock, T. 2016 The impact of multiple layering on internal wave transmission. J. Fluid Mech. 789, 617629.CrossRefGoogle Scholar
Guthrie, J. D., Fer, I. & Morison, J. 2015 Observational validation of the diffusive convection flux laws in the Amundsen Basin, Arctic Ocean. J. Geophys. Res.: Oceans 120, 78807896.CrossRefGoogle Scholar
Guthrie, J. D., Morison, J. H. & Fer, I. 2013 Revisiting internal waves and mixing in the Arctic Ocean. J. Geophys. Res.: Oceans 118, 39663977.CrossRefGoogle Scholar
von Helmholtz, H. 1868 Uber discontinuierliche Flussigkeits-Bewegungen [On the discontinuous movements of fluids]. Monatsber. Konigl. Preuss. Akad. Wiss. Berlin 23, 215228.Google Scholar
Holyer, J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.CrossRefGoogle Scholar
Holyer, J. Y. 1985 The stability of long steady three-dimensional salt fingers to long wavelength perturbations. J. Fluid Mech. 156, 495503.CrossRefGoogle Scholar
Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.CrossRefGoogle Scholar
Kelley, D. E. 1990 Fluxes through diffusive staircases: a new formulation. J. Geophys. Res. 95, 33653371.CrossRefGoogle Scholar
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J. & Ozsoy, E. 2003 The diffusive regime of double-diffusive convection. Prog. Oceanogr. 56, 461481.CrossRefGoogle Scholar
Kelvin, Lord 1871 Influence of wind and capillarity on waves in water supposed frictionless. Math. Phys. Papers 4, 7685.Google Scholar
Krishnamurti, R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.CrossRefGoogle Scholar
Levine, M. D., Paulson, C. A. & Morison, J. H. 1985 Internal waves in the Arctic Ocean: comparison with lower-latitude observations. J. Phys. Oceanogr. 15, 800809.2.0.CO;2>CrossRefGoogle Scholar
Levine, M. D., Paulson, C. A. & Morison, J. H. 1987 Observations of internal gravity waves under the Arctic pack ice. J. Geophys. Res. 92 (C), 779782.CrossRefGoogle Scholar
Linden, P. F. & Shirtcliffe, T. G. L. 1978 The diffusive interface in double-diffusive convection. J. Fluid Mech. 87, 417432.CrossRefGoogle Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.2.0.CO;2>CrossRefGoogle Scholar
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.CrossRefGoogle Scholar
Mei, C. C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.CrossRefGoogle Scholar
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech. 25, 17001705.CrossRefGoogle Scholar
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.CrossRefGoogle Scholar
Monin, A. S. & Ozmidov, R. V. 1985 Turbulence in the Ocean. D. Reidel.CrossRefGoogle Scholar
Novikov, A. & Papanicolau, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.CrossRefGoogle Scholar
Pinkel, R. 2005 Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr. 35, 645665.CrossRefGoogle Scholar
Polyakov, I. V., et al. 2017 Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285291.CrossRefGoogle ScholarPubMed
Polzin, K. 1996 Statistics of the Richardson number: mixing models and fine structure. J. Phys. Oceanogr. 26, 14091425.2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L., Kunze, E., Toole, J. M. & Schmitt, R. W. 2003 The partition of fine-scale energy into internal waves and geostrophic motions. J. Phys. Oceanogr. 33, 234248.2.0.CO;2>CrossRefGoogle Scholar
Radko, T. 2008 The double-diffusive modon. J. Fluid Mech. 609, 5985.CrossRefGoogle Scholar
Radko, T. 2011 Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res. 69, 723752.CrossRefGoogle Scholar
Radko, T. 2013 Double-Diffusive Convection. Cambridge University Press.CrossRefGoogle Scholar
Radko, T. 2014 Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech. 750, 3372.CrossRefGoogle Scholar
Radko, T. 2019 a Thermohaline-shear instability. Geophys. Res. Lett. 46, 822832.CrossRefGoogle Scholar
Radko, T. 2019 b Thermohaline layering on the microscale. J. Fluid Mech. 862, 672695.CrossRefGoogle Scholar
Radko, T., Ball, J., Colosi, J. & Flanagan, J. 2015 Double-diffusive convection in a stochastic shear. J. Phys. Oceanogr. 45, 31553167.CrossRefGoogle Scholar
Richardson, L. F. 1920 The supply of energy from and to atmospheric eddies. Proc. R. Soc. A 97, 354373.Google Scholar
Ruddick, B. R. 1980 Stress at a sheared finger interface. In Hydraulics and Fluid Mechanics Conference. Institution of Engineers.Google Scholar
Ruddick, B. R. 1985 Momentum transport in thermohaline staircases. J. Geophys. Res. 90, 895902.CrossRefGoogle Scholar
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26, 255285.CrossRefGoogle Scholar
Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.CrossRefGoogle ScholarPubMed
Smyth, W., Moum, J. & Caldwell, D. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31, 19691992.2.0.CO;2>CrossRefGoogle Scholar
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection II: the formation of thermohaline staircases. J. Fluid Mech. 677, 554571.CrossRefGoogle Scholar
Stern, M. E. 1960 The “salt-fountain” and thermohaline convection. Tellus 12, 172175.CrossRefGoogle Scholar
Stern, M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.CrossRefGoogle Scholar
Stern, M. E., Radko, T. & Simeonov, J. 2001 3D salt fingers in an unbounded thermocline with application to the Central Ocean. J. Mar. Res. 59, 355390.CrossRefGoogle Scholar
Sutherland, B. R. 2016 Internal wave transmission through a thermohaline staircase. Phys. Rev. Fluids 1, 013701.CrossRefGoogle Scholar
Thorpe, S. A. 1971 Experiments on instability and turbulence of stratified shear flows: miscible fluids. J. Fluid Mech. 46, 299319.CrossRefGoogle Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Timmermans, M.-L., Toole, J., Krishfield, R. & Winsor, P. 2008 Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermohaline. J. Geophys. Res. 113, C00A02.CrossRefGoogle Scholar
Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummel, N. 2011 Dynamics of fingering convection I: small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.CrossRefGoogle Scholar
Turner, J. S. 1985 Multicomponent convection. Annu. Rev. Fluid Mech. 17, 1144.CrossRefGoogle Scholar
Turner, J. S. 2010 The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. J. Phys. Oceanogr. 40, 249256.CrossRefGoogle Scholar
Veronis, G. 2007 Updated estimate of double diffusive fluxes in the C-SALT region. Deep-Sea Res. I 54, 831833.CrossRefGoogle Scholar
Woods, J. D. 1968 Wave-induced shear instability in the summer thermocline. J. Fluid Mech. 32, 791800.CrossRefGoogle Scholar
Worster, M. G. 2004 Time-dependent fluxes across double-diffusive interfaces. J. Fluid Mech. 505, 287307.CrossRefGoogle Scholar
Wunsch, S. 2018 Nonlinear harmonic generation by internal waves in a density staircase. Phys. Rev. Fluids 3, 114803.CrossRefGoogle Scholar