Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T16:56:26.022Z Has data issue: false hasContentIssue false

Supply mechanisms of the geostrophic mode in rotating turbulence: interactions with self, waves and eddies

Published online by Cambridge University Press:  13 September 2023

H. Lam*
Affiliation:
Université de Lyon, École centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France
A. Delache
Affiliation:
Université de Lyon, École centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France Université Jean Monnet, 42100 Saint-Étienne, France
F.S. Godeferd
Affiliation:
Université de Lyon, École centrale de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, LMFA, UMR5509, 69130 Ecully, France
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations are performed in rotating turbulence for different regimes at various Rossby and inertial Reynolds numbers ($\textit {Re}_I$). A new algorithm, adapted from stratified turbulence (Lam et al., J. Fluid Mech., vol. 923, 2021, A31) to rotating turbulence, permits to separate the three-dimensional velocity field into three parts: inertial waves (IWs), eddies and a geostrophic mode (GM). It uses the space–time properties of waves and their advection by the GM to filter the IWs from the rest of the motion. We obtain balance equations for the separate energies of waves, eddies and the GM. Their mutual interactions are evaluated and analysed via Sankey diagrams that provide a global picture of energy exchanges. When the flow is forced at large scale, it mainly feeds the wave part and the multiple interactions lead to energy dissipation in eddy and GM motion. We also show that, in addition to the wave/wave interaction that feeds the GM, corresponding to different mechanisms described in the literature, other non-documented interactions feed it, as the eddy/wave interaction or the eddy/eddy interaction at moderate $\textit {Re}_I$. We propose a scale-by-scale analysis of the transfer to the GM: we show that transfers from wave or eddy occur at large scale, that they either inject or remove energy, and that this occurs with or without direct cascade depending on the kind of interaction, wave/wave, eddy/wave or eddy/eddy. The self-interaction of the GM is an inverse cascade for its horizontal component, shaping it into a very large-scale flow.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellet, F., Godeferd, F.S., Scott, J.F. & Cambon, C. 2006 Wave turbulence in rapidly rotating flows. J. Fluid Mech. 562, 83121.CrossRefGoogle Scholar
Billant, P. 2021 Is the Taylor–Proudman theorem exact in unbounded domains? Case study of the three-dimensional stability of a vortex pair in a rapidly rotating fluid. J. Fluid Mech. 920, R1.CrossRefGoogle Scholar
Boffetta, G., Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.CrossRefGoogle Scholar
Bourouiba, L., Straub, D.N. & Waite, M.L. 2012 Non-local energy transfers in rotating turbulence at intermediate Rossby number. J. Fluid Mech. 690, 129147.CrossRefGoogle Scholar
Boury, S., Sibgatullin, I., Ermanyuk, E., Shmakova, N., Odier, P., Joubaud, S., Maas, L.R.M. & Dauxois, T. 2021 Vortex cluster arising from an axisymmetric inertial wave attractor. J. Fluid Mech. 926, A12.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett. 124, 124501.CrossRefGoogle ScholarPubMed
Buzzicotti, M., Aluie, H., Biferale, L. & Linkmann, M. 2018 a Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3 (3), 034802.CrossRefGoogle Scholar
Buzzicotti, M., Di Leoni, P.C. & Biferale, L. 2018 b On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41, 131.CrossRefGoogle ScholarPubMed
Cambon, C., Mansour, N.N. & Godeferd, F.S. 1997 Energy transfer in rotating turbulence. J. Fluid Mech. 337, 303332.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P. 2015 Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Phys. Rev. E 91 (4), 043016.CrossRefGoogle Scholar
Carriere, P. & Monkewitz, P.A. 1999 Convective versus absolute instability in mixed Rayleigh–Bénard– Poiseuille convection. J. Fluid Mech. 384, 243262.CrossRefGoogle Scholar
Davidson, P.A., Staplehurst, P.J. & Dalziel, S.B. 2006 On the evolution of eddies in a rapidly rotating system. J. Fluid Mech. 557, 135144.CrossRefGoogle Scholar
Di Leoni, P.C., Cobelli, P.J. & Mininni, P.D. 2015 The spatio-temporal spectrum of turbulent flows. Eur. Phys. J. E 38 (12), 136.CrossRefGoogle Scholar
Eyink, G.L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.CrossRefGoogle Scholar
Godeferd, F.S. & Moisy, F. 2015 Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67 (3), 030802.CrossRefGoogle Scholar
Greenspan, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Greenspan, H.P. 1969 On the non-linear interaction of inertial modes. J. Fluid Mech. 36 (2), 257264.CrossRefGoogle Scholar
Herring, J.R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17 (5), 859872.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research. Proceedings of the Summer Program 1988. Center for Turbulence Research.Google Scholar
Kafiabad, H.A., Savva, M.A.C. & Vanneste, J. 2019 Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech. 869, R7.CrossRefGoogle Scholar
van Kan, A. & Alexakis, A. 2020 Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 899, A33.CrossRefGoogle Scholar
Lam, H. 2021 Separation of eddy turbulence and wave turbulence in rotating or stratified flows. PhD thesis, University of Lyon.Google Scholar
Lam, H., Delache, A. & Godeferd, F.S. 2020 Partitioning waves and eddies in stably stratified turbulence. Atmosphere 11 (4), 420.CrossRefGoogle Scholar
Lam, H., Delache, A. & Godeferd, F.S. 2021 Energy balance and mixing between waves and eddies in stably stratified turbulence. J. Fluid Mech. 923, A31.CrossRefGoogle Scholar
Le Bars, M. 2016 Flows driven by libration, precession, and tides in planetary cores. Phys. Rev. Fluids 1, 060505.CrossRefGoogle Scholar
Le Reun, T., Favier, B., Barker, A.J. & Le Bars, M. 2017 Inertial wave turbulence driven by elliptical instability. Phys. Rev. Let. 119 (3), 034502.CrossRefGoogle ScholarPubMed
Le Reun, T., Favier, B. & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296326.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2021 Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence. Europhys. Lett. 132 (6), 64002.CrossRefGoogle Scholar
Le Reun, T., Gallet, B., Favier, B. & Le Bars, M. 2020 Near-resonant instability of geostrophic modes: beyond Greenspan's theorem. J. Fluid Mech. 900, R2.CrossRefGoogle Scholar
Linkmann, M., Berera, A., McKay, M. & Jäger, J. 2016 Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence. J. Fluid Mech. 791, 6196.CrossRefGoogle Scholar
Maffioli, A. 2017 Vertical spectra of stratified turbulence at large horizontal scales. Phys. Rev. Fluids 2, 104802.CrossRefGoogle Scholar
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.CrossRefGoogle Scholar
Maffioli, A., Delache, A. & Godeferd, F.S. 2020 Signature and energetics of internal gravity waves in stratified turbulence. Phys. Rev. Fluids 5, 114802.CrossRefGoogle Scholar
Marino, R., Mininni, P.D., Rosenberg, D. & Pouquet, A. 2013 Emergence of helicity in rotating stratified turbulence. Phys. Rev. E 87, 033016.CrossRefGoogle Scholar
Mininni, P.D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.CrossRefGoogle Scholar
Monkewitz, P.A., Huerre, P. & Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 120.CrossRefGoogle Scholar
Monsalve, E., Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125 (25), 254502.CrossRefGoogle ScholarPubMed
Mory, M. & Hopfinger, E.J. 1985 Rotating turbulence evolving freely from an initial quasi 2D state. In Macroscopic Modelling of Turbulent Flows (ed. U. Frisch, J.B. Keller, G.C. Papanicolaou & O. Pironneau), pp. 218–236. Springer.CrossRefGoogle Scholar
Moulin, F. & Flór, J.-B. 2006 Vortex–wave interaction in a rotating stratified fluid: WKB simulations. J. Fluid Mech. 563, 199222.CrossRefGoogle Scholar
Moulin, F.Y. & Flór, J.-B. 2005 Experimental study on wave breaking and mixing properties in the periphery of an intense vortex. Dyn. Atmos. Oceans 40 (1–2), 115130.CrossRefGoogle Scholar
Newell, A.C. 1969 Rossby wave packet interactions. J. Fluid Mech. 35 (2), 255271.CrossRefGoogle Scholar
Riley, J.J., Metcalfe, R.W. & Weissman, M.A. 1981 Direct numerical simulations of homogeneous turbulence in density-stratified fluids. AIP Conf. Proc. 76 (1), 79112.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Savva, M.A.C., Kafiabad, H.A. & Vanneste, J. 2021 Inertia-gravity-wave scattering by three-dimensional geostrophic turbulence. J. Fluid Mech. 916, A6.CrossRefGoogle Scholar
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.CrossRefGoogle Scholar
Sharma, M.K., Verma, M.K. & Sagar, C. 2019 Anisotropic energy transfers in rapidly rotating turbulence. Phys. Fluids 31 (8), 085117.CrossRefGoogle Scholar
Smith, L.M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.CrossRefGoogle Scholar
Staplehurst, P.J., Davidson, P.A. & Dalziel, S.B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.CrossRefGoogle Scholar
Verma, M.K. 2019 Energy Transfers in Fluid Flows: Multiscale and Spectral Perspectives. Cambridge University Press.CrossRefGoogle Scholar
Waleffe, F. 1993 Inertial transfers in the helical decomposition. Phys. Fluids A: Fluid Dyn. 5 (3), 677685.CrossRefGoogle Scholar
Yarom, E. & Sharon, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating flows. Nature Phys. 10 (7), 510514.CrossRefGoogle Scholar
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.CrossRefGoogle Scholar

Lam et al. Supplementary Movie 1

See "Lam et al. Supplementary Movie Captions"

Download Lam et al. Supplementary Movie 1(Video)
Video 25.6 MB

Lam et al. Supplementary Movie 2

See "Lam et al. Supplementary Movie Captions"

Download Lam et al. Supplementary Movie 2(Video)
Video 29.9 MB
Supplementary material: PDF

Lam et al. Supplementary Movie Captions

Lam et al. Supplementary Movie Captions
Download Lam et al. Supplementary Movie Captions(PDF)
PDF 15.8 KB