Hostname: page-component-599cfd5f84-cdgjw Total loading time: 0 Render date: 2025-01-07T08:20:23.909Z Has data issue: false hasContentIssue false

Subcritical transition to turbulence in a sudden circular pipe expansion

Published online by Cambridge University Press:  18 June 2018

Benoît Lebon
Affiliation:
Laboratoire Ondes et Milieux Complexes, CNRS and Université Le Havre Normandie, 76600 Le Havre, France
Jorge Peixinho*
Affiliation:
Laboratoire Ondes et Milieux Complexes, CNRS and Université Le Havre Normandie, 76600 Le Havre, France
Shun Ishizaka
Affiliation:
Laboratory for Flow Control, Hokkaido University, 060-8628 Sapporo, Japan
Yuji Tasaka
Affiliation:
Laboratory for Flow Control, Hokkaido University, 060-8628 Sapporo, Japan
*
Email address for correspondence: [email protected]

Abstract

The results of experiments on the flow through a circular sudden expansion pipe at moderate Reynolds numbers are presented. At five diameters upstream of the expansion, laminar flow was disturbed by a (constant) cross-flow jet, a suction or a (periodic in–out) synthetic jet from a hole in the wall. When the disturbance exceeded a critical value of the control parameter depending on the Reynolds number, localised turbulent patches formed downstream of the expansion at fixed axial positions. For the cross-flow jet, the onset of turbulent patches is related to the velocity ratio of the mean jet velocity to the mean pipe velocity. At low velocity ratio, turbulent patches formed intermittently. For the suction disturbance, the flow experienced a strong asymmetry of the recirculation region and required a larger velocity ratio before the turbulent patch formed. For the synthetic jet, the amplification of wavy disturbances into turbulent patches and their axial positions are controlled by the driving frequency. Overall, these results suggest the existence of different mechanisms for the development of localised turbulent patches.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberini, F., Simmons, M. J. H., Parker, D. J. & Koutchma, T. 2015 Validation of hydrodynamic and microbial inactivation models for UV-C treatment of milk in a swirl-tube ‘SurePure Turbulator™’. J. Food Engng 162, 6369.Google Scholar
Åsén, P.-O., Kreiss, G. & Rempfer, D. 2010 Direct numerical simulations of localized disturbances in pipe poiseuille flow. Comput. Fluids 39 (6), 926935.Google Scholar
Back, L. H. & Roschke, E. J. 1972 Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular channel expansion. J. Appl. Mech. 39 (3), 677681.Google Scholar
Boujo, E., Ehrenstein, U. & Gallaire, F. 2013 Open-loop control of noise amplification in a separated boundary layer flow. Phys. Fluids 25 (12), 124106.Google Scholar
Camussi, R., Guj, G. & Stella, A. 2002 Experimental study of a jet in a crossflow at very low Reynolds number. J. Fluid Mech. 454, 113144.Google Scholar
Cantwell, C. D., Barkley, D. & Blackburn, H. M. 2010 Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22 (3), 034101.Google Scholar
Chun, K. B. & Sung, H. J. 1996 Control of turbulent separation flow over a backward-facing step by local forcing. Exp. Fluids 21, 417426.Google Scholar
Cliffe, K. A., Hall, E. J. C., Houston, P., Phipps, E. T. & Salinger, A. G. 2012 Adaptivity and a posteriori error control for bifurcation problems III: incompressible fluid flow in open systems with O(2) symmetry. J. Sci. Comput. 52 (1), 153179.Google Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.Google Scholar
Draad, A. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M. 1998 Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids. J. Fluid Mech. 377, 267312.Google Scholar
Hammad, K. J., Ötügen, M. V. & Arik, E. B. 1999 A PIV study of the laminar axisymmetric sudden expansion flow. Exp. Fluids 26 (3), 266272.Google Scholar
Han, G., Tumin, A. & Wygnanski, I. 2000 Laminar–turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall. J. Fluid Mech. 419, 127.Google Scholar
Hof, B., Juel, A. & Mullin, T. 2003 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. Lett. 91 (24), 244502.Google Scholar
Ilak, M., Schlatter, P., Bagheri, S. & Henningson, D. S. 2012 Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio. J. Fluid Mech. 696, 94121.Google Scholar
Iribarne, A., Frantisak, F., Hummel, R. L. & Smith, J. W. 1972 An experimental study of instabilities and other flow properties of a laminar pipe jet. AIChE J. 18 (4), 689698.Google Scholar
Jabbal, M. & Zhong, S. 2008 The near wall effect of synthetic jets in a boundary layer. Intl J. Heat Fluid Flow 29 (1), 119130.Google Scholar
Karagozian, A. R. 2014 The jet in crossflow. Phys. Fluids 26 (10), 147.Google Scholar
Klotz, L. & Wesfreid, J. E. 2017 Experiments on transient growth of turbulent spots. J. Fluid Mech. 829, R4.Google Scholar
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Global stability of multiple solutions in plan sudden-expansion flow. J. Fluid Mech. 693, 127.Google Scholar
Latornell, D. J. & Pollard, A. 1986 Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions. Phys. Fluids 29 (9), 28282835.Google Scholar
Macagno, E. O. & Hung, T.-K. 1967 Computational and experimental study of a captive annular eddy. J. Fluid Mech. 28 (1), 4364.Google Scholar
Marais, C., Godoy-Diana, R., Barkley, D. & Wesfreid, J. E. 2011 Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake. Phys. Fluids 23 (1), 014104.Google Scholar
Mehta, V. & Cohen, J. 2016 Experimental investigation of a low-amplitude transition in pipe flow. Fluid Dyn. Res. 48 (6), 061428.Google Scholar
Mellibovsky, F. & Meseguer, A. 2007 Pipe flow transition threshold following localized impulsive perturbations. Phys. Fluids 19 (4), 044102.Google Scholar
Miranda-Barea, A., Fabrellas-García, C., Parras, L. & del Pino, C. 2016 Spin-down in rotating Hagen–Poiseuille flow: a simple criterion to detect the onset of absolute instabilities. J. Fluid Mech. 793, 316334.Google Scholar
Mullin, T., Seddon, J. R. T., Mantle, M. D. & Sederman, A. J. 2009 Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21, 014110.Google Scholar
Pak, B., Cho, Y. I. & Choi, S. U. S. 1990 Separation and reattachment of non-newtonian fluid flows in a sudden expansion pipe. J. Non-Newtonian Fluid Mech. 37 (2–3), 175199.Google Scholar
Peixinho, J. & Mullin, T. 2007 Finite-amplitude thresholds for transition in pipe flow. J. Fluid Mech. 582, 169178.Google Scholar
Pfenninger, W. 1961 Boundary layer suction experiments with laminar flow at high Reynolds numbers in the inlet length of a tube by various suction methods. In Boundary Layer and Flow Control (ed. Lachman, G. V.), pp. 961980. Pergamon Press.Google Scholar
Philip, J. & Cohen, J. 2010 Formation and decay of coherent structures in pipe flow. J. Fluid Mech. 655, 258279.Google Scholar
Rennels, D. C. & Hudson, H. M. 2012 Pipe Flow: A Practical and Comprehensive Guide. Wiley.Google Scholar
Sanmiguel-Rojas, E., Del Pino, C. & Gutiérrez-Montes, C. 2010 Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion. Phys. Fluids 22 (7), 071702.Google Scholar
Sanmiguel-Rojas, E. & Mullin, T. 2012 Finite-amplitude solutions in flow through a sudden expansion in a circular pipe. J. Fluid Mech. 691, 201213.Google Scholar
Selvam, K., Peixinho, J. & Willis, A. P. 2015 Localised turbulence in a circular pipe flow with gradual expansion. J. Fluid Mech. 771, R2.Google Scholar
Selvam, K., Peixinho, J. & Willis, A. P. 2016 Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence. Fluid Dyn. Res. 48 (6), 061418.Google Scholar
Sreenivasan, K. R. & Strykowski, P. J. 1983 An instability associated with a sudden expansion in a pipe flow. Phys. Fluids 26 (10), 27662768.Google Scholar
Tang, H., Salunkhe, P., Zheng, Y., Du, J. & Wu, Y. 2014 On the use of synthetic jet actuator arrays for active flow separation control. Exp. Therm. Fluid Sci. 57, 110.Google Scholar
Tasaka, Y., Schneider, T. M. & Mullin, T. 2010 Folded edge of turbulence in a pipe. Phys. Rev. Lett. 105 (17), 174502.Google Scholar
Vétel, J., Garon, A., Pelletier, D. & Farinas, M.-I. 2008 Asymmetry and transition to turbulence in a smooth axisymmetric constriction. J. Fluid Mech. 607, 351386.Google Scholar
Westin, K. J. A., Bakchinov, A. A., Kozlov, V. V. & Alfredsson, P. H. 1998 Experiments on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized free stream disturbance. Eur. J. Mech. (B/Fluids) 17 (6), 823846.Google Scholar
Zmijanovic, V., Mendez, S., Moureau, V. & Nicoud, F. 2017 About the numerical robustness of biomedical benchmark cases: interlaboratory FDA’s idealized medical device. Intl J. Numer. Meth. Biomed. Engng 33 (1), e02789.Google Scholar
Supplementary material: File

Lebon et al. supplementary material

Lebon et al. supplementary material 1

Download Lebon et al. supplementary material(File)
File 7.1 MB