Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:06:05.697Z Has data issue: false hasContentIssue false

A study of free jet impingement. Part 2. Free jet turbulent structure and impingement heat transfer

Published online by Cambridge University Press:  29 March 2006

Coleman Dup. Donaldson
Affiliation:
Aeronautical Research Associates of Princeton, Inc., Princeton, New Jersey
Richard S. Snedeker
Affiliation:
Aeronautical Research Associates of Princeton, Inc., Princeton, New Jersey
David P. Margolis
Affiliation:
Aeronautical Research Associates of Princeton, Inc., Princeton, New Jersey

Abstract

An experimental study of jet impingement is completed with the presentation of the measured turbulent characteristics of the circular subsonic jet and the heat transfer rates measured when this jet impinges normal to a flat plate. The data suggest that for impingement very close to the stagnation point, the heat transfer can be computed by applying a turbulent correction factor to the laminar value calculated for a flow having the same pressure distribution as that present in the impingement region. The correction factor is found to be a function of the axial distance and not of Reynolds number. Farther away, the measurements agree well with the heat transfer estimated using the method of Rosenbaum & Donaldson (1967). At large distances from the stagnation point, the heat transfer falls off in inverse proportion with the distance.

The documentation of the turbulent jet flow field includes measurements of the radial and axial velocity fluctuations and their spectra, as well as the radial distribution of turbulent shear $\overline{w^{\prime}u^{\prime}}$. In addition, measurements of the turbulence near the stagnation point and the total pressure fluctuation at the stagnation point are presented.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Comings, E. W., Clapp, J. T. & Taylor, J. F. 1948 Ind. Engng Chem. 40, 1076.
Corrsin, S. 1943 NACA ACR 3L23.
Corrsin, S. & Uberoi, M. S. 1950 NACA Rep. 998.
Donaldson, C. duP. & Snedeker, R. S. 1971 J. Fluid Mech. 45, 281.
Gardon, R. & Cobonpue, J. 1961 Proc. 1961 Int. Heat Transfer Conf. 454.Google Scholar
Gardon, R. & Akfirat, J. C. 1965a ASME Paper no. 65-HT-20.
Gardon, R. & Akfirat, J. C. 1965b Int. J. Heat Mass Transfer, 8, 12611272.
Gibson, M. M. 1963 J. Fluid Mech. 15, 161.
Giedt, W. H. 1949 Trans. ASME 71, 375.
Huang, G. C. 1963 J. Heat Transfer, 85, 237.
Kestin, J., Maeder, P. F. & Sogin, H. H. 1961 Z. angew. Math. Phys. 12, 115.
Laurence, J. C. 1956 NACA Rep. 1292.
Lees, L. 1956 Jet Propulsion, 26, 4.
Maisel, D. S. & Sherwood, T. K. 1950 Chem. Engng Prog. 46, 131.
O'Connor, T. J., Comfort, E. H. & Cass, L. A. 1965 A VCO Corp. Tech. Rep. RAD-TR-65-18.
Reiber, H. 1925 Mitt. Forschungsarbeiten, 269, 1.
Rosenbaum, H. & Donaldson, C. duP. 1967 Aero. Res. Associates of Princeton, Inc. Rep. 101.
Schnautz, J. H. 1958 Ph.D. Thesis, Oregon State University.
Seban, R. H. 1960 J. Heat Transfer, 82, 101.
Smith, M. C. & Kuethe, A. M. 1966 Phys. Fluids, 9, 2337.
Strong, D. R., Siddon, T. E. & Chu, W. T. 1967 UTIA Tech. Note 107.
van der Hegge Zijnen, B. G. 1957 Appl. Sci. Res. A, 7, 205.
Vickers, J. M. F. 1959 Ind. Engng Chem. 51, 967.
Wehofer, S. 1963 AEDC Tech. Doc. Rep. 6393.
Westkaemper, J. C. 1960 AEDC Tech. Note 60202.
Westkaemper, J. C. 1961 J. Aero. Sci. 28, 907.
Zapp, G. M. 1950 MSE Thesis, Oregon State University.