Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T03:34:42.828Z Has data issue: false hasContentIssue false

Structure of turbulence in the flow around a rectangular cylinder

Published online by Cambridge University Press:  11 August 2022

Alessandro Chiarini*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Davide Gatti
Affiliation:
Institute for Fluid Mechanics, Karlsruhe Institute of Technology, Kaiserstr. 10, 76131 Karlsruhe, Germany
Andrea Cimarelli
Affiliation:
DIEF, University of Modena and Reggio Emilia, 41125 Modena, Italy
Maurizio Quadrio
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
*
Email address for correspondence: [email protected]

Abstract

The separating and reattaching turbulent flow past a rectangular cylinder is studied to describe how small and large scales contribute to the sustaining mechanism of the velocity fluctuations. The work is based on the anisotropic generalised Kolmogorov equations, exact budget equations for the second-order structure function tensor in the space of scales and in the physical space. Scale-space energy fluxes show that forward and reverse energy transfers occur simultaneously in the flow, with interesting modelling implications. Over the longitudinal cylinder side, the Kelvin–Helmholtz instability of the leading edge shear layer generates large spanwise rolls, which get stretched into hairpin-like vortices and eventually break down into smaller streamwise vortices. Independent sources of velocity fluctuations act at different scales. The flow dynamics is dominated by pressure–strain: the flow impingement on the cylinder surface in the reattachment zone produces spanwise velocity fluctuations very close to the wall, and at larger wall distances reorients them to feed streamwise-aligned vortices. In the near wake, large von Kármán-like vortices are shed from the trailing edge and coexist with smaller turbulent structures, each with its own independent production mechanism. At the trailing edge, the sudden disappearance of the wall changes the structure of turbulence: streamwise vortices vanish progressively, while spanwise structures close to the wall are suddenly turned into vertical fluctuations by the pressure–strain.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agostini, L. & Leschziner, M. 2017 Spectral analysis of near-wall turbulence in channel flow at ${Re_\tau =4200}$ with emphasis on the attached-eddy hypothesis. Phys. Rev. Fluids 2 (1), 014603.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J.Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J.Fluid Mech. 896, A1624.CrossRefGoogle Scholar
Bevilaqua, P.M. & Lykoudis, P.S. 1978 Turbulence memory in self-preserving wakes. J.Fluid Mech. 89 (3), 589606.CrossRefGoogle Scholar
Bruno, L., Salvetti, M.V. & Ricciardelli, F. 2014 Benchmark on the aerodynamics of a rectangular 5 : 1 cylinder: an overview after the first four years of activity. J.Wind Engng Ind. Aerodyn. 126, 87106.CrossRefGoogle Scholar
Casciola, C.M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J.Fluid Mech. 476, 105114.CrossRefGoogle Scholar
Chaurasia, H.K. & Thompson, M.C. 2011 Three-dimensional instabilities in the boundary-layer flow over a long rectangular plate. J.Fluid Mech. 681, 411433.CrossRefGoogle Scholar
Cherry, N.J., Hillier, R. & Latour, M.E.M. 1984 Unsteady measurements in a separated and reattaching flow. J.Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Chiarini, A. & Quadrio, M. 2021 The turbulent flow over the BARC rectangular cylinder: a DNS study. Flow Turbul. Combust. 107, 875899.CrossRefGoogle Scholar
Chiarini, A. & Quadrio, M. 2022 The importance of corner sharpness in the BARC test case: a numerical study. Wind Struct. 34 (1), 43–58.Google Scholar
Chiarini, A., Quadrio, M. & Auteri, F. 2022 On the frequency selection mechanism of the low-$Re$ flow around rectangular cylinders. J.Fluid Mech. 933, A44.CrossRefGoogle Scholar
Cimarelli, A. & De Angelis, E. 2012 Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids 24 (1), 015102.CrossRefGoogle Scholar
Cimarelli, A. & De Angelis, E. 2014 The physics of energy transfer toward improved subgrid-scale models. Phys. Fluids 26 (5), 055103.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E. & Casciola, C.M. 2013 Paths of energy in turbulent channel flows. J.Fluid Mech. 715, 436451.CrossRefGoogle Scholar
Cimarelli, A., De Angelis, E., Jimenez, J. & Casciola, C.M. 2016 Cascades and wall-normal fluxes in turbulent channel flows. J.Fluid Mech. 796, 417436.CrossRefGoogle Scholar
Cimarelli, A., Franciolini, M. & Crivellini, A. 2020 Numerical experiments in separating and reattaching flows. Phys. Fluids 32 (9), 095119.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A. & Angeli, D. 2018 On the structure of the self-sustaining cycle in separating and reattaching flows. J.Fluid Mech. 857, 907936.CrossRefGoogle Scholar
Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A. & Angeli, D. 2019 On negative turbulence production phenomena in the shear layer of separating and reattaching flows. Phys. Lett. A 383 (10), 10191026.CrossRefGoogle Scholar
Cimarelli, A., Mollicone, J.-P., van Reeuwijk, M. & De Angelis, E. 2021 Spatially evolving cascades in temporal planar jets. J.Fluid Mech. 910, A1931.CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R.A. 2001 Turbulent energy scale budget equations in a fully developed channel flow. J.Fluid Mech. 430, 87109.CrossRefGoogle Scholar
Davidson, P.A., Nickels, T.B. & Krogstad, P.-Å. 2006 The logarithmic structure function law in wall-layer turbulence. J.Fluid Mech. 550, 5160.CrossRefGoogle Scholar
Gatti, D., Chiarini, A., Cimarelli, A. & Quadrio, M. 2020 Structure function tensor equations in inhomogeneous turbulence. J.Fluid Mech. 898, A533.CrossRefGoogle Scholar
Gatti, D., Remigi, A., Chiarini, A., Cimarelli, A. & Quadrio, M. 2019 An efficient numerical method for the generalized Kolmogorov equation. J.Turbul. 20 (8), 457480.CrossRefGoogle Scholar
Hill, R.J. 2001 Equations relating structure functions of all orders. J.Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Hill, R.J. 2002 Exact second-order structure–function relationships. J.Fluid Mech. 468, 317326.CrossRefGoogle Scholar
Hourigan, K., Thompson, M.C. & Tan, B.T. 2001 Self-sustained oscillations in flows around long blunt plates. J.Fluids Struct. 15, 387398.CrossRefGoogle Scholar
Huang, Y., Zhou, B., Tang, Z. & Zhang, F. 2017 Transition scenario and transition control of the flow over a semi-infinite square leading-edge plate. Phys. Fluids 29 (7), 074105.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Reynolds, W.C. 1970 The mechanics of an organized wave in turbulent shear flow. J.Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J.Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kiya, M. & Matsumura, M. 1988 Incoherent turbulence structure in the near wake of a normal plate. J.Fluid Mech. 190, 343356.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J.Fluid Mech. 137, 83113.CrossRefGoogle Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J.Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Luchini, P. 2013 Linearized no-slip boundary conditions at a rough surface. J.Fluid Mech. 737, 349367.CrossRefGoogle Scholar
Luchini, P. 2016 Immersed-boundary simulation of turbulent flow past a sinusoidally undulated river bottom. Eur. J. Mech. (B/Fluids) 55, 340347.CrossRefGoogle Scholar
Mansour, N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J.Fluid Mech. 194, 1544.CrossRefGoogle Scholar
Marati, N., Casciola, C.M. & Piva, R. 2004 Energy cascade and spatial fluxes in wall turbulence. J.Fluid Mech. 521, 191215.CrossRefGoogle Scholar
Moore, D.M., Letchford, C.W. & Amitay, M. 2019 Energetic scales in a bluff body shear layer. J.Fluid Mech. 875, 543575.CrossRefGoogle Scholar
Okajima, A. 1982 Strouhal numbers of rectangular cylinders. J.Fluid Mech. 123, 379398.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Sasaki, K. & Kiya, M. 1991 Three-dimensional vortex structure in a leading-edge separation bubble at moderate Reynolds numbers. Trans. ASME J. Fluids Engng 113 (3), 405410.CrossRefGoogle Scholar
Simpson, R.L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21 (1), 205232.CrossRefGoogle Scholar
Tafti, D.K. & Vanka, S.P. 1991 A three-dimensional numerical study of flow separation and reattachment on a blunt plate. Phys. Fluids A 3 (12), 28872909.CrossRefGoogle Scholar
Tamura, T., Miyagi, T. & Kitagishi, T. 1998 Numerical prediction of unsteady pressures on a square cylinder with various corner shapes. J.Wind Engng Ind. Aerod. 74, 531542.CrossRefGoogle Scholar
Tenaud, C., Podvin, B., Fraigneau, Y. & Daru, V. 2016 On wall pressure fluctuations and their coupling with vortex dynamics in a separated–reattached turbulent flow over a blunt flat plate. Intl J. Heat Fluid Flow 61 (Part B), 730748.CrossRefGoogle Scholar
Thiesset, F., Danaila, L. & Antonia, R.A. 2014 Dynamical interactions between the coherent motion and small scales in a cylinder wake. J.Fluid Mech. 749, 201226.CrossRefGoogle Scholar
Trias, F.X., Gorobets, A. & Oliva, A. 2015 Turbulent flow around a square cylinder at Reynolds number 22,000: a DNS study. Comput. Fluids 123, 8798.CrossRefGoogle Scholar