Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:19:40.664Z Has data issue: false hasContentIssue false

Structure of space-time correlations of bursting phenomena in an open-channel flow

Published online by Cambridge University Press:  20 April 2006

Hiroji Nakagawa
Affiliation:
Department of Civil Engineering, Kyoto University, Kyoto 606, Japan
Iehisa Nezu
Affiliation:
Department of Civil Engineering, Kyoto University, Kyoto 606, Japan

Abstract

The present study is to investigate the structure of space-time correlations of bursting motions, such as ejections and sweeps in an open-channel flow, by a new conditional sampling analysis of the instantaneous velocity and Reynolds-stress signals measured simultaneously by two dual-sensor hot-film probes. One probe was fixed near the edge of the buffer layer, while the other probe was moved in the streamwise, vertical and spanwise directions. The sorted instantaneous Reynolds-stress signals obtained from the fixed probe were used as a detecting information of the occurrences of ejection or sweep events. The streamwise and vertical spatial characteristics of the ejection-sweep motions, and their convection process are investigated in detail. Also, the spanwise spatial properties of the high- and low-speed streaks in the bursting motions are examined experimentally by the present conditional sampling method.

Next, a qualitative model is proposed which attempts to explain the space-time structures of the bursting phenomenon, on the basis of the above anemometry information and other visual observations.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bark, F. H. 1975 J. Fluid Mech. 70, 229.
Black, T. J. 1968 A.I.A.A. Paper no. 68–42.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 Phys. Fluids 15, 1545.
Bremhorst, K. & Walker, T. B. 1973 J. Fluid Mech. 61, 173.
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 J. Fluid Mech. 63, 209.
Brown, G. L. & Thomas, A. S. W. 1977 Phys. Fluids 20, S243.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Eckelmann, H. 1974 J. Fluid Mech. 65, 439.
Einstein, H. A. & Li, H. 1956 Proc. A.S.C.E. EM-2, pp. 127.
Falco, R. E. 1977 Phys. Fluids 20, S124.
Favre, A. J. 1965 J. Appl. Mech. 32, 241.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Hinze, J. O. 1975 Turbulence (2nd edn), pp. 586770. McGraw-Hill.
Jackson, R. E. 1976 J. Fluid Mech. 77, 531.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kinoshita, R. 1967 Photographic Surveying 6, 1 (in Japanese).
Kline, S. J., Reynolds, W. C., Schraub, R. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283.
Kreplin, H. P. & Eckelmann, H. 1979 J. Fluid Mech. 95, 305.
Landahl, M. T. 1967 J. Fluid Mech. 29, 441.
Landahl, M. T. 1977 Phys. Fluids Suppl. 20, 55. See also Hydraulic Problems Solved by Stochastic Methods (ed. P. Hjorth, L. Jönsson & P. Larsen), 2nd Int. Symp. Stochastic Hydraulics, no. 1, pp. 1–22, 1977.
Laufer, J. 1954 N.A.C.A. TR-1174.
Laufer, J. 1975 Ann. Rev. Fluid Mech. 7, 307.
Laufer, J. & Narayanan, M. A. B. 1971 Phys. Fluids 14, 182.
Lee, M. K., Eckelman, L. D. & Hanratty, T. J. 1974 J. Fluid Mech. 66, 17.
Lu, S. S. & Willmarth, W. W. 1973 J. Fluid Mech. 60, 481.
Morrison, W. R. B., Bullock, K. J. & Kronauer, R. E. 1971 J. Fluid Mech. 47, 639.
Müler, A. 1977 Hydraulic Problems Solved by Stochastic Methods (ed. P. Hjorth, L. Jönsson & P. Larsen), 2nd Int. Symp. Stochastic Hydraulics, no. 3, pp. 122.
Nakagawa, H. & Nezu, I. 1974 Proc. Japan Soc. Civil Eng. 231, 6170.
Nakagawa, H. & Nezu, I. 1977a J. Fluid Mech. 80, 99.
Nakagawa, H. & Nezu, I. 1977b 5th Symp. Flow Visualization, ISAS, Univ. of Tokyo, no. 5, pp. 4750 (in Japanese).
Nakagawa, H. & Nezu, I. 1978 Memoirs, Fac. Engng Kyoto Univ. 40, 213.
Nakagawa, H. & Nezu, I. 1979 Memoirs, Fac. Engng Kyoto Univ. 41, 240.
Nakagawa, H. & Nezu, I. 1980 ICHMT/IUTAM Symp. Heat and Mass Transfer and Structure of Turbulence, Dubrovnik. Hemisphere.
Nakagawa, H., Nezu, I. & Matsumoto, N. 1980 Memoirs, Fac. Engng Kyoto Univ. 42, 85.
Nezu, I. 1977a Turbulent structure in open-channel flows. Ph.D. thesis, Kyoto University.
Nezu, I. 1977b Proc. Japan Soc. Civil Eng. 261, 6776 (in Japanese).
Nezu, I., Nakagawa, H. & Tominaga, A. 1980 Ann. Meeting, Japan Soc. Civil Eng. no. II, p. 210 (in Japanese).
Nezu, I. & Nakagawa, H. 1981 25th Japanese Conf. on Hydraulics. (To be published.)
Nezu, I., Nakagawa, H. & Tominaga, A. 1981 Proc. Japan Soc. Civil Eng. (To appear.)
Nishioka, M., Iida, S. & Shimizu, K. 1977 9th Symp. Turbulence, ISAS, Univ. of Tokyo, pp. 129136 (in Japanese).
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 J. Fluid Mech. 61, 513.
Offen, G. R. & Kline, S. J. 1975 J. Fluid Mech. 70, 209.
Praturi, A. K. & Brodkey, R. S. 1978 J. Fluid Mech. 89, 251.
Rotta, J. C. 1972 Turbulente Strömungen, cha. 3. B. G. Teubner.
Sabot, J. & Comte-bellot, G. 1976 J. Fluid Mech. 74, 767.
Theodorsen, T. 1955 50 Jahre Grenzschichtforschung (ed. H. Görtler & W. Tollmien), pp. 5562. Frier.
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 J. Fluid Mech. 83, 673.
Willmarth, W. W. 1975 Adv. Appl. Mech. 15, 159.