Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T17:16:42.566Z Has data issue: false hasContentIssue false

Strong interactions between two corotating quasi-geostrophic vortices

Published online by Cambridge University Press:  14 November 2007

ROSS R. BAMBREY
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
JEAN N. REINAUD
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK
DAVID G. DRITSCHEL
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK

Abstract

In this paper we investigate the interaction between two corotating quasi-geostrophic vortices. The initially ellipsoidal vortices are separated horizontally by a distance corresponding to the margin of stability, as determined from an ellipsoidal analysis. The subsequent interaction depends on four parameters: the vortex volume ratio, the vertical centroid separation, and the height-to-width aspect ratios of each vortex. The most commonly observed strong interaction is partial merger, where only part of the weaker vortex is incorporated into the stronger one or cast into filamentary debris. Despite the proliferation of small-scale filamentary structure during many vortex interactions, on average the self-induced vortex energy exhibits an ‘inverse cascade’ to larger scales, broadly consistent with spectral theories of turbulence. Curiously, we observe that a range of intermediate-scale vortices are preferentially sheared out during the interactions, leaving two main populations of large and small vortices.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Billant, P., Dritschel, D. G. & Chomaz, J.-M. 2006 Bending and twisting instabilities of columnar elliptical vortices in a rotating strongly stratified fluid. J. Fluid Mech. 561, 73102.CrossRefGoogle Scholar
Charney, J. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.2.0.CO;2>CrossRefGoogle Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.CrossRefGoogle Scholar
Dritschel, D. G. 2002 Vortex merger in rotating stratified flows. J. Fluid Mech. 455, 83101.CrossRefGoogle Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-lagrangian algorithm for simulating fine-scale conservative dynamical fields. Q. J. R. Met. Soc. 123, 10971130.Google Scholar
Dritschel, D. G. & Macaskill, C. 2000 The role of boundary conditions in the simulation of rotating, stratified turbulence. Geophys. Astrophys. Fluid Dyn. 92, 233253.CrossRefGoogle Scholar
Dritschel, D. G., Reinaud, J. N. & McKiver, W. J. 2004 The quasi-geostrophic ellipsoidal model. J. Fluid Mech. 505, 201223.CrossRefGoogle Scholar
Dritschel, D. G. & de la Torre Juárez, M. 1996 The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129160.CrossRefGoogle Scholar
Dritschel, D. G., de la Torre Juárez, M. & Ambaum, M. H. P. 1999 On the three-dimensional vortical nature of atmospheric and oceanic flows. Phys. Fluids 11, 15121520.CrossRefGoogle Scholar
Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids A 4, 17371744.CrossRefGoogle Scholar
Ebbesmeyer, C. C., Taft, B. A., McWilliams, J. C., Shen, C. Y., Riser, S. C., Rossby, H. T., Biscaye, P. E. & Östlund, H. G. 1986 Detection, structure and origin of extreme anomalies in a western atlantic oceanographic section. J. Phys. Oceanogr. 16, 591612.2.0.CO;2>CrossRefGoogle Scholar
Garrett, C. 2000 The dynamic ocean. In Perspectives in Fluid Mechanics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), chap. 10. Cambridge University Press.Google Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic.Google Scholar
von Hardenberg, J., McWilliams, J. C., Provenzale, A., Shchepetkin, A. & Weiss, J. B. 2000 Vortex merging in quasi-geostrophic flows. J. Fluid Mech. 412, 331353.CrossRefGoogle Scholar
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B. & Pfister, L. 1995 Stratosphere-troposphere exchange. Revs. Geophys. 33, 403439.CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential-vorticity maps. Q. J. R. Met. Soc. 111, 877946.CrossRefGoogle Scholar
Hua, B. L. & Haidvogel, D. B. 1986 Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci. 43, 29232936.2.0.CO;2>CrossRefGoogle Scholar
Marcus, P. S. 1988 Numerical simulation of jupiter's great red spot. Nature 331, 693696.CrossRefGoogle Scholar
Melander, M. V., Zabusky, N. J. & McWilliams, J. C. 1992 Symmetric vortex merger in two dimensions: causes and conditions. J. Fluid Mech. 195, 303340.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2005 The critical merger distance between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 522, 357381.CrossRefGoogle Scholar
Reinaud, J. N., Dritschel, D. G. & Koudella, C. 2003 The shape of the vortices in quasi-geostrophic turbulence. J. Fluid Mech. 474, 175192.CrossRefGoogle Scholar
Tran, C. V. & Dritschel, D. G. 2006 Vanishing enstrophy dissipation in two-dimensional navier–stokes turbulence in the inviscid limit. J. Fluid Mech. 559, 107116.CrossRefGoogle Scholar
Waugh, D. 1992 The efficiency of symmetric vortex merger. Phys. Fluids A 4, 17451758.CrossRefGoogle Scholar