Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T16:16:51.084Z Has data issue: false hasContentIssue false

Stratified Kolmogorov flow

Published online by Cambridge University Press:  09 January 2002

NEIL J. BALMFORTH
Affiliation:
Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064, USA
YUAN-NAN YOUNG
Affiliation:
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA

Abstract

In this study we investigate the Kolmogorov flow (a shear flow with a sinusoidal velocity profile) in a weakly stratified, two-dimensional fluid. We derive amplitude equations for this system in the neighbourhood of the initial bifurcation to instability for both low and high Péclet numbers (strong and weak thermal diffusion, respectively). We solve amplitude equations numerically and find that, for low Péclet number, the stratification halts the cascade of energy from small to large scales at an intermediate wavenumber. For high Péclet number, we discover diffusively spreading, thermal boundary layers in which the stratification temporarily impedes, but does not saturate, the growth of the instability; the instability eventually mixes the temperature inside the boundary layers, so releasing itself from the stabilizing stratification there, and thereby grows more quickly. We solve the governing fluid equations numerically to compare with the asymptotic results, and to extend the exploration well beyond onset. We find that the arrest of the inverse cascade by stratification is a robust feature of the system, occurring at higher Reynolds, Richards and Péclet numbers – the flow patterns are invariably smaller than the domain size. At higher Péclet number, though the system creates slender regions in which the temperature gradient is concentrated within a more homogeneous background, there are no signs of the horizontally mixed layers separated by diffusive interfaces familiar from doubly diffusive systems.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)