Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T18:03:33.936Z Has data issue: false hasContentIssue false

Steady viscous flow past a sphere at high Reynolds numbers

Published online by Cambridge University Press:  21 April 2006

Bengt Fornberg
Affiliation:
Exxon Research and Engineering Company, Annandale, NJ 08801, USA

Abstract

Numerical solutions are presented for steady incompressible flow past a sphere. At high Reynolds numbers (results are presented up to R = 5000), the wake is found to resemble a Hill's spherical vortex.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J. Fluid Mech. 1, 388.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Fornberg, B. 1985 Steady viscous flow past a circular cylinder up to Reynolds number 600. J. Comp. Phys. 61, 297.Google Scholar
Fornberg, B. 1987 Steady viscous flow past a cylinder and a sphere at high Reynolds numbers. In Boundary-Layer Separation (ed. F. T. Smith & S. N. Brown), p. 3. Springer.
Le Clair, B. P., Hamielec, A. E. & Pruppacher, H. R. 1970 A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci. 27, 308.Google Scholar
Peregrine, D. H. 1985 A note on the steady high-Reynolds-number flow about a circular cylinder. J. Fluid Mech. 157, 493.Google Scholar
Pozrikidis, C. 1986 The nonlinear instability of Hill's vortex. J. Fluid Mech. 168, 337.Google Scholar
Smith, F. T. 1985 A structure for laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155, 175.Google Scholar
Smith, F. T. 1986 Concerning inviscid solutions for large-scale separated flows J. Engng Maths 20, 271.Google Scholar
Smith, F. T. 1987 Separating flow: Small-scale, large-scale and nonlinear unsteady effects. In Boundary-Layer Separation (ed. F. T. Smith & S. N. Brown), p. 331. Springer.
Ta, P. L. 1975 Étude numérique de l'écoulement d'un fluide visqueux incompressible autour d'un cylindre fixe ou en rotation. Effet Magnus. J. Méc. 14, 109.Google Scholar
Woo, S. W. 1971 Simultaneous free and forced convection around submerged cylinders and spheres. Ph.D. Thesis, McMaster University, Hamilton, Ontario.