Hostname: page-component-599cfd5f84-d4snv Total loading time: 0 Render date: 2025-01-07T06:17:43.516Z Has data issue: false hasContentIssue false

Steady streaming in a two-dimensional box model of a passive cochlea

Published online by Cambridge University Press:  22 July 2014

Elisabeth Edom
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, 8092 Zürich, Switzerland
Dominik Obrist*
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, 8092 Zürich, Switzerland ARTORG Center for Biomedical Engineering Research, University of Bern, 3010 Bern, Switzerland
Leonhard Kleiser
Affiliation:
Institute of Fluid Dynamics, ETH Zurich, 8092 Zürich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Acoustic stimulation of the cochlea leads to a travelling wave in the cochlear fluids and on the basilar membrane (BM). It has long been suspected that this travelling wave leads to a steady streaming flow in the cochlea. Theoretical investigations suggested that the steady streaming might be of physiological relevance. Here, we present a quantitative study of the steady streaming in a computational model of a passive cochlea. The structure of the streaming flow is illustrated and the sources of streaming are closely investigated. We describe a source of streaming which has not been considered in the cochlea by previous authors. This source is also related to a steady axial displacement of the BM which leads to a local stretching of this compliant structure. We present theoretical predictions for the streaming intensity which account for these new phenomena. It is shown that these predictions compare well with our numerical results and that there may be steady streaming velocities of the order of millimetres per second. Our results indicate that steady streaming should be more relevant to low-frequency hearing because the strength of the streaming flow rapidly decreases for higher frequencies.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89 (4), 609646.Google Scholar
Baker, G. J., Zetes-Tolomeo, D. E., Steele, C. R. & Tolomeo, J. A. 2006 Cochlear mechanics. In The Biomedical Engineering Handbook (ed. Bronzino, J. P.), chap. 63, CRC Press.Google Scholar
von Békésy, G. 1960 Experiments in Hearing. McGraw-Hill.Google Scholar
Beyer, R. P. Jr 1992 A computational model of the cochlea using the immersed boundary method. J. Comput. Phys. 98, 145162.Google Scholar
Böhnke, F. & Scharff, M. 2009 Acoustic streaming the cochlea. SIAM J. Appl. Maths 48, 319322.Google Scholar
Boluriaan, S. & Morris, P. J. 2003 Acoustic streaming: from Rayleigh to today. Intl J. Aeroacoust. 2 (3), 255292.Google Scholar
Bradley, C. E. 1996 Acoustic streaming field structure: the influence of the radiator. J. Acoust. Soc. Am. 100 (3), 13991408.Google Scholar
Bradley, C. 2012 Acoustic streaming field structure. Part II. Examples that include boundary-driven flow. J. Acoust. Soc. Am. 131 (1), 1323.Google Scholar
Cussler, E. L. 2009 Diffusion: Mass Transfer in Fluid Systems, 3rd edn, chap. 5, Cambridge University Press.Google Scholar
de la Rochefoucauld, O. & Olson, E. S. 2007 The role of organ of Corti mass in passive cochlear tuning. Biophys. J. 93, 34343450.Google Scholar
Ding, X., Li, P., Lin, S.-C. S., Stratton, Z. S., Nama, N., Guo, F., Slotcavage, D., Mao, X., Shi, J., Costanzo, F. & Huang, T. J. 2013 Surface acoustic wave microfluidics. Lab on a Chip 13, 32263649.Google Scholar
Edom, E., Obrist, D., Henniger, R., Sim, J.-H., Huber, A. H. & Kleiser, L. 2013 The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion. J. Acoust. Soc. Am. 134 (5), 37493758.CrossRefGoogle ScholarPubMed
Emadi, G., Richter, C.-P. & Dallos, P. 2004 Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J. Neurophysiol. 91 (1), 474488.Google Scholar
Gerstenberger, C.2013 Numerical simulation of acoustic streaming within the cochlea. PhD thesis, Leibniz Universität Hannover.Google Scholar
Gerstenberger, C. & Wolters, F.-E. 2011 Numerical simulation of acoustic streaming within a biological fluid–structure coupled system like the cochlea. In Fortschritte der Akustik – DAGA 2011 (ed. Becker-Schweitzer, J. & Notbohm, G.), vol. 2, pp. 817818. Deutsche Gesellschaft für Akustik e.V. (DEGA).Google Scholar
Givelberg, E. & Bunn, J. 2003 A comprehensive three-dimensional model of the cochlea. J. Comput. Phys. 191, 377391.Google Scholar
Henniger, R., Obrist, D. & Kleiser, L. 2010 High-order accurate solution of the incompressible Navier–Stokes equations on massively parallel computers. J. Comput. Phys. 229, 35433572.CrossRefGoogle Scholar
Hill, D. C. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.Google Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A 454 (1971), 903995.Google Scholar
Hudspeth, A. J. 2008 Making an effort to listen: mechanical amplification in the ear. Neuron 59 (4), 530545.Google Scholar
Kingma, G. G., Miller, J. M. & Myers, M. W. 1992 Chronic drug infusion into the scala tympani of the guinea pig cochlea. J. Neurosci. Methods 45, 127134.CrossRefGoogle ScholarPubMed
Kotas, C. W., Rogers, P. H. & Yoda, M. 2011 Acoustically induced streaming flows near a model cod otolith and their potential implications for fish hearing. J. Acoust. Soc. Am. 130 (2), 10491059.Google Scholar
Lesser, M. B. & Berkley, D. A. 1972 Fluid mechanics of the cochlea. Part 1. J. Fluid Mech. 51 (3), 497512.CrossRefGoogle Scholar
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61, 391418.Google Scholar
Lighthill, J. 1981 Energy flow in the cochlea. J. Fluid Mech. 106, 149213.Google Scholar
Lighthill, J. 1992 Acoustic streaming in the ear itself. J. Fluid Mech. 239, 551606.CrossRefGoogle Scholar
Luchini, P. & Charru, F. 2005 Acoustic streaming past a vibrating wall. Phys. Fluids 17 (12), 122106.Google Scholar
Naidu, R. C. & Mountain, D. C. 2001 Longitudinal coupling in the basilar membrane. J. Assoc. Res. Oto. 2, 257267.Google ScholarPubMed
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Peterson, L. C. & Bogert, B. P. 1950 A dynamical theory of the cochlea. J. Acoust. Soc. Am. 22 (3), 369381.CrossRefGoogle Scholar
Pozrikidis, C. 2008 Boundary-integral modeling of cochlear hydrodynamics. J. Fluids Struct. 24, 336365.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.Google Scholar
Sim, J. H., Chatzimichalis, M., Lauxmann, M., Röösli, C., Eiber, A. & Huber, A. M. 2010 Complex stapes motions in human ears. J. Assoc. Res. Oto. 11, 329341.Google Scholar
Suh, Y. K. & Kang, S. 2008 Acoustic streaming. In Encyclopedia of Microfluidics and Nanofluidics (ed. Li, D.), Springer.Google Scholar
Tan, M. K., Friend, J. R., Matar, O. K. & Yeo, L. Y. 2010 Capillary wave motion excited by high frequency surface acoustic waves. Phys. Fluids 22 (11), 112112.Google Scholar
Vanneste, J. & Bühler, O. 2011 Streaming by leaky surface acoustic waves. Proc. R. Soc. A 467 (2130), 17791800.CrossRefGoogle Scholar
Wittbrodt, M. J., Steele, C. R. & Puria, S. 2006 Developing a physical model of the human cochlea using microfabrication methods. Audiol. Neuro-Otol. 11, 104112.CrossRefGoogle Scholar