Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-21T15:03:23.440Z Has data issue: false hasContentIssue false

The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma

Published online by Cambridge University Press:  12 June 2012

Richard D. Whalley
Affiliation:
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Kwing-So Choi*
Affiliation:
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The flow field around an asymmetric dielectric-barrier-discharge (DBD) plasma actuator in quiescent air is studied using particle image velocimetry (PIV) and smoke-flow visualization. On initiation of DBD plasma a starting vortex is created, which rolls up to form a coherent structure. The starting vortex becomes self-similar when the maximum velocity induced by the DBD plasma actuator reaches a steady state. Here, the plasma jet momentum increases linearly with time, suggesting that the DBD plasma actuator entrains and accelerates the surrounding fluid with a constant force. The wall-parallel and wall-normal distances of the vortex core are observed to scale with ${t}^{2/ 3} $ as it travels at $3{1}^{\circ } $ to the wall. The velocity of the starting vortex is found to scale with ${t}^{- 1/ 3} $, while the circulation induced by the plasma actuator scales with ${t}^{1/ 3} $.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
©2012 Cambridge University Press.

References

Allen, J. J. & Chong, M. S. 2000 Vortex formation in front of a piston moving through a cylinder. J. Fluid Mech. 416, 128.CrossRefGoogle Scholar
Allen, J. J. & Lopez, J. M. 2007 Transition processes for junction vortex flow. J. Fluid Mech. 585, 457467.CrossRefGoogle Scholar
Allen, J. J. & Naitoh, T. 2007 Scaling and instability of a junction vortex. J. Fluid Mech. 574, 123.CrossRefGoogle Scholar
Cantwell, B. J. 1986 Viscous starting jets. J. Fluid Mech. 173, 159189.CrossRefGoogle Scholar
Choi, K.-S., Jukes, T. N. & Whalley, R. D. 2011 Turbulent boundary-layer control with plasma actuators. Phil. Trans. R. Soc. A 369, 14431458.CrossRefGoogle ScholarPubMed
Conlon, B. P. & Lichter, S. 1995 Dipole formation in the transient planar wall jet. Phys. Fluids 7 (5), 9991014.CrossRefGoogle Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.Google Scholar
Enloe, C. L., McHarg, M. G. & McLaughlin, T. E. 2008 Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J. Appl. Phys. 103, 073302.CrossRefGoogle Scholar
Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., Corke, T. C., Post, M. & Hadded, O. 2004 Mechanisms and responses of a single dielectric barrier plasma actuator: geometric effects. AIAA J. 42 (3), 595604.Google Scholar
Gherardi, N., Gamal, G., Gat, E., Ricard, A. & Massines, F. 2000 Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Sci. Technol. 9, 340346.Google Scholar
Jukes, T. N. & Choi, K.-S. 2009 Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma. Phys. Fluids 21, 094106.CrossRefGoogle Scholar
Jukes, T. N., Choi, K.-S., Johnson, G. A. & Scott, S. J. 2006 Characterisation of surface plasma-induced wall flows through velocity and temperature measurement. AIAA J. 44, 764771.CrossRefGoogle Scholar
Kotsonis, M., Ghaemi, S., Veldhuis, L. & Scarano, F. 2011 Measurement of the body force field of plasma actuators. J. Appl. Phys. D 44, 045204.Google Scholar
Kriegseis, J., Grundmann, S. & Tropea, C. 2011 Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. J. Appl. Phys. 110, 0133051.CrossRefGoogle Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D 40 (3), 605636.CrossRefGoogle Scholar
Robinson, M 1962 A history of the electric wind. Am. J. Phys. 30 (5), 366372.Google Scholar
Shin, J. & Raja, L. L. 2007 Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges. J. Phys. D 40, 31453154.Google Scholar
Westerweel, J 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 13791392.CrossRefGoogle Scholar
Whalley, R. D. 2011 Turbulent boundary-layer control with DBD plasma actuators using spanwise travelling-wave technique. PhD thesis, University of Nottingham.CrossRefGoogle Scholar
Whalley, R & Choi, K.-S. 2010 Starting, traveling and colliding vortices: Dielectric-barrier-discharge plasma in quiescent air. Phys. Fluids 22, 091105.CrossRefGoogle Scholar