Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:59:59.115Z Has data issue: false hasContentIssue false

Stability of rotating non-smooth complex fluids

Published online by Cambridge University Press:  29 August 2012

Ishan Sharma*
Affiliation:
Mechanics & Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
*
Email address for correspondence: [email protected]

Abstract

We extend the classical energy criterion for stability, the Lagrange–Dirichlet theorem, to rotating non-smooth complex fluids. The stability test so developed is very general and may be applied to most rotating non-smooth systems where the spectral method is inapplicable. In the process, we rigourously define an appropriate coordinate system in which to investigate stability – this happens to be the well-known Tisserand mean axis of the body – as well as systematically distinguish perturbations that introduce angular momentum and/or jumps in the stress state from those that do not. With a view to future application to planetary objects, we specialize the stability test to freely rotating self-gravitating ellipsoids. This is then employed to investigate the stability to homogeneous perturbations of rotating inviscid fluid ellipsoids. We recover results consistent with earlier predictions, and, in the process, also reconcile some contradictory conclusions about the stability of Maclaurin spheroids. Finally, we consider the equilibrium and stability of freely rotating self-gravitating Bingham fluid ellipsoids. We find that the equilibrium shapes of most such ellipsoids are secularly stable to homogeneous perturbations that preserve angular momentum, but not otherwise. We also touch upon the effect of shear thinning on stability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.Google Scholar
2. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. & Binzel, R. P. 2002 An overview of the asteroids: the asteroids III perspective. In Asteroids III (ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P. & Binzel, R. P. ), pp. 315. University of Arizona Press.CrossRefGoogle Scholar
3. Burns, J. A. & Safronov, V. S. 1973 Asteroid nutation angles. Mon. Not. R. Astron. Soc. 165, 403411.Google Scholar
4. Chakrabarty, J. 1969 On uniqueness and stability in rigid/plastic solids. Intl J. Mech. Sci. 11 (9), 723731.Google Scholar
5. Chandrasekhar, S. 1969 Ellipsoidal Figures of Equilibrium. Yale University Press.Google Scholar
6. Chen, W. F. & Han, D. J. 1988 Plasticity for Structural Engineers. Springer.Google Scholar
7. Greenwood, D. T. 1988 Principles of Dynamics. Prentice-Hall.Google Scholar
8. Hagihara, Y. 1970 Theories of Equilibrium Figures of a Rotating Homogeneous Fluid Mass. US Government Printing Office.Google Scholar
9. Harris, A. W., Fahnestock, E. G. & Pravec, P. 2009 On the shapes and spins of ‘rubble pile’ asteroids. Icarus 199, 310318.Google Scholar
10. Hill, R 1957 Stability of rigid-plastic solids. J. Mech. Phys. Solids 6 (1), 18.Google Scholar
11. Holsapple, K. A. 2001 Equilibrium configurations of solid cohesionless bodies. Icarus 154, 432448.CrossRefGoogle Scholar
12. Holsapple, K. A. 2007 Spin limits of solar system bodies: from the small fast-rotators to 2003 EL61. Icarus 187, 500509.Google Scholar
13. Hunter, C 1977 On secular stability, secular instability, and points of bifurcation of rotating gaseous masses. Astrophys. J. 213, 497.CrossRefGoogle Scholar
14. Jardetzky, W. 1958 Theories of Figures of Celestial Bodies. Interscience.Google Scholar
15. Jeans, J. H. 1961 Astronomy and Cosmogony, 2nd ed. Dover.Google Scholar
16. Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
17. Kellogg, O. D. 1953 Foundations of Potential Theory. Dover.Google Scholar
18. Knops, R. J. & Wilkes, E. W. 1966 On Movchan’s theorems for stability of continuous systems. Intl J. Engng Sci. 4, 303329.CrossRefGoogle Scholar
19. Knops, R. J. & Wilkes, E. W. 1973 Theory of elastic stability. In Encyclopedia of Physics Vol. VI a/3: Mechanics of Solids (ed. Flügge, S. ), pp. 125302. Springer.Google Scholar
20. Koiter, W. T. 2008 Elastic Stability of Solids and Structures. Cambridge University Press.Google Scholar
21. Lai, D., Rasio, F. A. & Shapiro, S. L. 1993 Ellipsoidal figures of equilibrium: compressible models. Astrophys. J. Suppl. S 88, 205252.Google Scholar
22. LaSalle, J. & Lefschetz, S. 1961 Stability by Lyapunov’s Direct Method. Academic.Google Scholar
23. Lebovitz, N. R. 1966 On Riemann’s criterion for the stability of liquid ellipsoids. Astrophys J. 145, 878.Google Scholar
24. Lebovitz, N. R. 1998 The mathematical development of the classical ellipsoids. Intl J. Engng Sci. 36, 14071420.CrossRefGoogle Scholar
25. Lubliner, Jacob 1990 Plasticity Theory. Macmillan.Google Scholar
26. Lyttleton, R. A. 1953 The Stability of Rotating Liquid Masses. Cambridge University Press.Google Scholar
27. Movchan, A. A. 1959 Direct method of Liapunov in stability problems of elastic systems. J. Appl. Math. Mech. 23, 483493.Google Scholar
28. Movchan, A. A. 1960 Stability of processes with respect to two metrics. J. Appl. Math. Mech. 24, 9881001.Google Scholar
29. Munk, W. H. & MacDonald, G. J. F. 1960 The Rotation of the Earth. Cambridge University Press.Google Scholar
30. Nguyen, Q. S. 2000 Stability and Nonlinear Solid Mechanics. John Wiley & Sons.Google Scholar
31. Oldroyd, J. G. 1947 A rational formulation of the equations of plastic flow for a Bingham solid. Math. Proc. Cambridge 43, 100105.Google Scholar
32. Prager, W. 1961 Introduction to Mechanics of Continua. Ginn & Co.Google Scholar
33. Richardson, D. C., Elankumaran, P. & Sanderson, R. E. 2005 Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus 173, 349361.CrossRefGoogle Scholar
34. Richardson, D. C., Leinhardt, Z. M., Melosh, H. J., Bottke, W. F. Jr. & Asphaug, E. Jr. 2002 Gravitational aggregates: evidence and evolution. In Asteroids III (ed. Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P. ), pp. 501515. University of Arizona Press.Google Scholar
35. Riemann, B. 1860 Ein Beitrag zu den Untersuchengen über die Bewegung eines flüssigen gleichartigen Ellipsoides. Königl. Gesell. Wis. zu Göttingen 8.Google Scholar
36. Rosenkilde, C. E. 1967 The tensor virial-theorem including viscous stress and the oscillations of a Maclaurin spheroid. Astrophys. J. 148, 825841.Google Scholar
37. Sanchez, P. & Scheeres, D. J. 2012 DEM simulation of rotation-induced reshaping and disruption of rubble-pile asteroids. Icarus 218, 876894.CrossRefGoogle Scholar
38. Sharma, I., Burns, J. A. & Hui, C.-Y. 2005 Nutational damping times in solids of revolution. Mon. Not. R. Astron. Soc. 359, 7992.Google Scholar
39. Sharma, I., Jenkins, J. T. & Burns, J. A. 2009 Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids. Icarus 200, 304322.Google Scholar
40. Storåkers, B. 1977 On uniqueness and stability under configuration-dependent loading of solids with or without a natural time. J. Mech. Phys. Solids 25 (4), 269287.Google Scholar
41. Ziegler, H. 1968 Principles of Structural Stability. Blaisdell Pub. Co.Google Scholar