Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:15:45.112Z Has data issue: false hasContentIssue false

Stability of plane Poiseuille flow of a dilute suspension of slender fibres

Published online by Cambridge University Press:  12 April 2006

Fritz H. Bark
Affiliation:
Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden
Hernán Tinoco
Affiliation:
Department of Mechanics, The Royal Institute of Technology, Stockholm, Sweden

Abstract

The linear hydrodynamic stability problem for plane Poiseuille flow of a dilute suspension of rigid fibres is solved numerically. The constitutive equation given by Batchelor (1970a, b, 1971) is used to model the rheological properties of the suspension. The resulting eigenvalue problem is shown to be singular. The appropriate contour in the complex plane is determined by considering an initial-value problem. It is shown that, for a fixed, but not too large, inclination of the wave front to the mean flow, the fibres cause the critical Reynolds number to increase monotonically with the product of the volume fraction of the fibres and the square of their aspect ratio. The stabilizing influence of the fibres seems to vanish for large wave inclination angles.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1970a J. Fluid Mech. 41, 545.
Batchelor, G. K. 1970b J. Fluid Mech. 44, 419.
Batchelor, G. K. 1971 J. Fluid Mech. 46, 813.
Batchelor, G. K. 1976 Proc. 14th IUTAM Cong. Theor. Appl. Mech., Delft, p. 33. North-Holland.
Dikii, L. A. 1960 Dokl. Akad. Nauk SSSR 135, 1068.
Filipsson, G. R., Lagerstedt, J. H. T. & Bark, F. H. 1977 J. Non-Newtonian Fluid Mech. 3, 97.
Gadd, G. E. 1965 Nature 206, 463.
Godunov, S. 1961 Usp. Mat. Nauk 16, 171.
Jyr, A. 1977 Z. angew. Math. Phys. 27, 717.
Hearn, A. C. 1971 Proc. 2nd Symp. Symbolic & Algebraic Manipulations, Los Angeles (ed. S. R. Patrick), p. 128. Ass. Comp. Machinery.
Henkel, D. & Gyr, A. 1977 Z. angew. Math. Phys. 28, 167.
Hoyt, J. W. 1972a Naval Undersea Center Tech. Rep. no. 299.
Hoyt, J. W. 1972b J. Basic Engng 94, 258.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kizior, T. E. & Seyer, F. A. 1974 Trans. Soc. Rheol. 18, 271.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 1.
Landahl, M. T. 1972 Proc. 13th IUTAM Cong. Theor. Appl. Mech., Moscow, p. 117. Springer.
Landahl, M. T. & Bark, F. H. 1974 Polymères et Lubrication, p. 249. Coll. C.N.R.S. no. 233.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Lumley, J. L. 1972 Symp. Mat. Inst. Naz. Alta Mat. vol. 9, p. 315. Academic Press.
Mewis, J. & Metzener, A. B. 1974 J. Fluid Mech. 62, 593.
Nishioka, M., Iida, S. & ICHIKAWA, Y. 1975 J. Fluid Mech. 72, 731.
Rosinger, E. L. J., Woodhams, R. T. & Chaffey, C. E. 1974 Trans. Soc. Rheol. 18, 453.
Sarpkaya, T. 1975 J. Fluid Mech. 68, 345.
Squire, H. B. 1933 Proc. Roy. Soc. A 142, 621.
Vaseleski, R. C. & Metzner, A. B. 1974 A.I.Ch.E. J. 20, 301.
Virk, P. S. 1975 A.I.Ch.E. J. 21, 625.